Confused About Tensor Density Behaviour

Gunthi
Messages
65
Reaction score
1
\nabla_a[(-g)^{\frac{1}{2}}T^a] = T^a\nabla_a[(-g)^{\frac{1}{2}}]+(-g)^{\frac{1}{2}}\nabla_aT^a

I just realized that I don't quite understand how a tensor density behaves when multiplied by a vector. I'm trying to find some clues in D'Inverno's book but I'm getting more confused.

Thanks in advance :)
 
Physics news on Phys.org
\triangledown _{\mu }(-g)^{1/2}= 0 so you can pull it out of the covariant derivative. The main difference between tensor densities and tensors with regards to the covariant derivative is that with the former you have an extra term involving the weight of the density.
 
WannabeNewton said:
\triangledown _{\mu }(-g)^{1/2}= 0 so you can pull it out of the covariant derivative. The main difference between tensor densities and tensors with regards to the covariant derivative is that with the former you have an extra term involving the weight of the density.

So the covariant derivative is distributive like the Lie derivative? How could I prove that?

Thanks
 
Yes \triangledown _{\alpha }(S\otimes T) = T\otimes (\triangledown_{\alpha }S ) + S\otimes (\triangledown _{\alpha }T). One rather easy way (but a tad bit mechanical) to prove it, in component form, would be to take the general definition of the covariant derivative in terms of the christoffel symbol and use the fact that the product of an (m,n) tensor with an (k, l) tensor gives some (m + k, n + l) tensor.
 
You're just asking about the Leibnitz rule. I'm pretty sure every derivative ever invented satisfies the Liebnitz rule. (If it didn't, I wouldn't want to call it a derivative.)

For example see Wald where he defines derivatives as maps on tensors that satisfy a number of properties, among them the Leibnitz rule. (The covariant derivative is one such derivative. And keep in mind that from Wald's point of view tensor densities are just tensors chosen with respect to particular coordinate systems.)
 
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...
From $$0 = \delta(g^{\alpha\mu}g_{\mu\nu}) = g^{\alpha\mu} \delta g_{\mu\nu} + g_{\mu\nu} \delta g^{\alpha\mu}$$ we have $$g^{\alpha\mu} \delta g_{\mu\nu} = -g_{\mu\nu} \delta g^{\alpha\mu} \,\, . $$ Multiply both sides by ##g_{\alpha\beta}## to get $$\delta g_{\beta\nu} = -g_{\alpha\beta} g_{\mu\nu} \delta g^{\alpha\mu} \qquad(*)$$ (This is Dirac's eq. (26.9) in "GTR".) On the other hand, the variation ##\delta g^{\alpha\mu} = \bar{g}^{\alpha\mu} - g^{\alpha\mu}## should be a tensor...
Back
Top