Is Trichotomy Necessary to Prove Limit Inequalities in Metric Spaces?

  • Thread starter Thread starter tronter
  • Start date Start date
tronter
Messages
183
Reaction score
1
Let X be a metric space, let a \in X be a limit point of X, and let f: X \to \mathbb{R} be a function. Assume that the limit of f exists at a. Fix t \in \mathbb{R}. Suppose there exists r > 0 such that f(x) \geq t for every x \in B_{r}(a) \backslash \{a \}; then \lim_{x \to a} f(x) \geq t.

How would you prove this? Would you use Trichotomy?
 
Physics news on Phys.org


Find a sequence xk such that xk converges to a. Then what can you say about f(xk) for each k?
 


you will get a contradiction pretty easy if lim f(x)<t.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top