ifly2hi
- 5
- 0
Cannot prove the DE is exact??
Hey guys I am looking at a non-linear first order DE. the problem is : (y^2)/2+2*y*exp^(x) +(y+exp^(x))dy/dx=exp^(-x) y(0)=1. I put everything on the same side: ((y^2)/2+2*y*exp^(x)-exp^(-x))dx+(y+exp^(x))dy=0. This equation is not exact so I use (My-Nx)/N and got a function of x alone that equaled 1. Put it into exp^(∫1dx)=exp^(x); took this and multiplied it my N and still M=(y^2)/2+2*y*exp^(x)-exp^(-x) and the "new" N=exp^(2*x)+y*exp^(x): and still My≠Nx. It is still not exact and i have no idea where to go from here? help
Hey guys I am looking at a non-linear first order DE. the problem is : (y^2)/2+2*y*exp^(x) +(y+exp^(x))dy/dx=exp^(-x) y(0)=1. I put everything on the same side: ((y^2)/2+2*y*exp^(x)-exp^(-x))dx+(y+exp^(x))dy=0. This equation is not exact so I use (My-Nx)/N and got a function of x alone that equaled 1. Put it into exp^(∫1dx)=exp^(x); took this and multiplied it my N and still M=(y^2)/2+2*y*exp^(x)-exp^(-x) and the "new" N=exp^(2*x)+y*exp^(x): and still My≠Nx. It is still not exact and i have no idea where to go from here? help