Perpetual motion describes hypothetical machines that operate or produce useful work indefinitely and, more generally, hypothetical machines that produce more work or energy than they consume, whether they might operate indefinitely or not...
One classification of perpetual motion machines refers to the particular law of thermodynamics the machines purport to violate:[2]
-A perpetual motion machine of the first kind produces work without the input of energy. It thus violates the first law of thermodynamics: the law of conservation of energy.
-A perpetual motion machine of the second kind is a machine which spontaneously converts thermal energy into mechanical work. When the thermal energy is equivalent to the work done, this does not violate the law of conservation of energy. However it does violate the more subtle second law of thermodynamics (see also entropy). The signature of a perpetual motion machine of the second kind is that there is only one heat reservoir involved, which is being spontaneously cooled without involving a transfer of heat to a cooler reservoir. This conversion of heat into useful work, without any side effect, is impossible, according to the second law of thermodynamics.
A more obscure category is a perpetual motion machine of the third kind, usually (but not always)[3] defined as one that completely eliminates friction and other dissipative forces, to maintain motion forever (due to its mass inertia). Third in this case refers solely to the position in the above classification scheme, not the third law of thermodynamics. Although it is impossible to make such a machine,[4][5] as dissipation can never be 100% eliminated in a mechanical system, it is nevertheless possible to get very close to this ideal (see examples in the Low Friction section). Such a machine would not serve as a source of energy but would have utility as a perpetual energy storage device.