Karatechop250 said:
So I am calculating the renormalization group rquations for some exotic new particles and used dimensional regularization for all the calculations up to this point. Now I am look at the vertex corrections in the massless limit in which all external momentum are equal to 0. The issue here is I end up with an integral I don't know how to solve.
Its this integral
$$\int d^{4}l \frac{1}{l^4}$$
which you obviously can't solve using dimensional regularization. What other method can I use to solve it and how will I make the solution compatable with my other solutions since they will have the ##\frac{1}{\epsilon}##
You can treat this in dimensional regularization. Typically you would just say that this dimensionless integral gives zero by the Veltman rule, but we can be more specific. The interesting part is obviously
$$ I = \int_0^\infty d\ell \ell^{d-5} = \left[ \frac{k^{d-4}}{d-4} \right]_0^\infty,$$
which is UV divergent if ##d>4## and IR divergent.if ##d<4##. We can isolate the divergences by introducing an intermediate scale ##\mu## and writing the integral as the sum
$$ I = \int_0^\mu d\ell \ell^{d-5} + \int_\mu^\infty d\ell \ell^{d-5}.$$
The first term contains the IR divergence so we let ##d = 4 + \epsilon_\text{IR}##, with ##\epsilon_\text{IR}>0##. The 2nd term has the UV divergence, so there we let ##d=4-\epsilon_{UV}##. Putting these together, we find
$$I = \int_0^\mu d\ell \ell^{\epsilon_\text{IR}-1} + \int_\mu^\infty d\ell \ell^{-\epsilon_{UV}-1} = \frac{\mu^{\epsilon_\text{IR}}}{\epsilon_\text{IR}} + \frac{1}{\epsilon_\text{UV} \mu^{\epsilon_\text{UV}}} .$$
For small ##\epsilon_\text{IR},\epsilon_\text{UV}##,
$$I \approx \frac{1}{\epsilon_\text{IR}} + \log \mu + \frac{1}{\epsilon_\text{UV} } - \log \mu \approx \frac{1}{\epsilon_\text{IR}} + \frac{1}{\epsilon_\text{UV} }.$$
How to deal with these divergences now depends on the physical process under consideration. The UV divergence should be automatically canceled by the appropriate counterterm for the diagram being considered. For the IR divergence, we can simply include the subtraction in the renormalization scheme, e.g. MS. Otherwise we have to incorporate the diagram into a physical quantity. Then the possible IR divergences will cancel in the sum over the collection of diagrams that contribute to the physical quantity.