Jamie's question at Yahoo Answers regarding an indefinite integral

Click For Summary
SUMMARY

The integral of the function (3x + 2)/(x^2 + 3x + 1) dx can be evaluated using partial fraction decomposition and substitution techniques. The roots of the denominator, derived using the quadratic formula, are x = (-3 ± √5)/2. The integration process involves expressing the integrand in terms of its partial fractions, leading to the final result: I = (1/2)((3 - √5)ln|2x + 3 - √5| + (3 + √5)ln|2x + 3 + √5|) + C. This solution utilizes the Heaviside cover-up method and the integration rule for logarithmic functions.

PREREQUISITES
  • Understanding of partial fraction decomposition
  • Familiarity with the quadratic formula
  • Knowledge of integration techniques, including substitution and logarithmic integration
  • Proficiency in handling hyperbolic functions and their inverses
NEXT STEPS
  • Study advanced integration techniques, focusing on substitution methods
  • Learn about the Heaviside cover-up method in detail
  • Explore the properties and applications of logarithmic integrals
  • Investigate hyperbolic functions and their integrals, particularly in relation to calculus
USEFUL FOR

Mathematics students, calculus instructors, and anyone interested in mastering integration techniques, particularly those involving rational functions and logarithmic expressions.

MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Integrate (3x + 2)/(x^2+3x+1) dx?

Please tell me the name of the way you did it, for ex. Start with integration by parts, or substitution.

I got to the Integral of 1-(3u+2)/(u^2+3u+1)du where u = tanx

I have posted a link there to this thread so the OP can view my work.
 
Physics news on Phys.org
Hello Jamie,

We are given to evaluate:

$$I=\int\frac{3x+2}{x^2+3x+1}\,dx$$

I would look at the partial fraction decomposition of the integrand. Application of the quadratic formula gives us the roots of the denominator as:

$$x=\frac{-3\pm\sqrt{5}}{2}$$

Hence, we may state:

$$x^2+3x+1=\frac{1}{4}\left(2x+3-\sqrt{5} \right)\left(2x+3+\sqrt{5} \right)$$

And so the integrand may be expressed as:

$$\frac{4(3x+2)}{\left(2x+3-\sqrt{5} \right)\left(2x+3+\sqrt{5} \right)}$$

Thus, we may assume the partial fraction of this integrand will take the form:

$$\frac{4(3x+2)}{\left(2x+3-\sqrt{5} \right)\left(2x+3+\sqrt{5} \right)}=\frac{A}{2x+3-\sqrt{5}}+\frac{B}{2x+3+\sqrt{5}}$$

Using the Heaviside cover-up method, we find:

$$A=\frac{4\left(3\left(\dfrac{-3+\sqrt{5}}{2} \right)+2 \right)}{2\left(\dfrac{-3+\sqrt{5}}{2} \right)+3+\sqrt{5}}=3-\sqrt{5}$$

$$B=\frac{4\left(3\left(\dfrac{-3-\sqrt{5}}{2} \right)+2 \right)}{2\left(\dfrac{-3-\sqrt{5}}{2} \right)+3-\sqrt{5}}=3+\sqrt{5}$$

And so we find:

$$\frac{4(3x+2)}{\left(2x+3-\sqrt{5} \right)\left(2x+3+\sqrt{5} \right)}=\frac{3-\sqrt{5}}{2x+3-\sqrt{5}}+\frac{3+\sqrt{5}}{2x+3+\sqrt{5}}$$

And we may now state:

$$I=\frac{3-\sqrt{5}}{2}\int\frac{2}{2x+3-\sqrt{5}}\,dx+\frac{3+\sqrt{5}}{2}\int\frac{2}{2x+3+\sqrt{5}}\,dx$$

Using the integration rule:

$$\int\frac{du}{u+a}\,du=\ln|u+a|+C$$

we find:

$$I=\frac{3-\sqrt{5}}{2}\ln|2x+3-\sqrt{5}|+\frac{3+\sqrt{5}}{2}\ln|2x+3+\sqrt{5}|+C$$

$$I=\frac{1}{2}\left((3-\sqrt{5})\ln|2x+3-\sqrt{5}|+(3+\sqrt{5})\ln|2x+3+\sqrt{5}| \right)+C$$

And in conclusion, we may now state:

$$\int\frac{3x+2}{x^2+3x+1}\,dx=\frac{1}{2}\left((3-\sqrt{5})\ln|2x+3-\sqrt{5}|+(3+\sqrt{5})\ln|2x+3+\sqrt{5}| \right)+C$$
 
MarkFL said:
Here is the question:
I have posted a link there to this thread so the OP can view my work.

When I look at integration problems, the first thing I always look for are simple substitutions...

$\displaystyle \begin{align*} \int{\frac{3x + 2}{x^2 + 3x + 1}\,dx} &= 3\int{\frac{x + \frac{2}{3}}{x^2 + 3x + 1} \, dx} \\ &= \frac{3}{2} \int{ \frac{2x + \frac{4}{3}}{x^2 + 3x + 1} \, dx } \\ &= \frac{3}{2} \int{\frac{2x + 3 - \frac{5}{3}}{x^2 + 3x + 1}\,dx} \\ &= \frac{3}{2} \int{ \frac{2x + 3}{x^2 + 3x + 1}\,dx } - \frac{3}{2}\int{\frac{\frac{5}{3}}{x^2 + 3x + 1} \, dx} \\ &= \frac{3}{2} \int{ \frac{2x + 3}{x^2 + 3x + 1}\, dx} - \frac{5}{2} \int{ \frac{1}{x^2 + 3x + \left( \frac{3}{2} \right) ^2 - \left( \frac{3}{2} \right) ^2 + 1 } \, dx} \\ &= \frac{3}{2} \int{ \frac{2x + 3}{x^2 + 3x + 1} \, dx} - \frac{5}{2} \int{ \frac{1}{ \left( x + \frac{3}{2} \right) ^2 - \frac{5}{4} } \, dx} \end{align*}$

Now making the substitutions $\displaystyle \begin{align*} u = x^2 + 3x + 1 \implies du = \left( 2x + 3 \right) \, dx \end{align*}$ and $\displaystyle \begin{align*} x + \frac{3}{2} = \frac{\sqrt{5}}{2}\cosh{(t)} \implies dx = \frac{\sqrt{5}}{2}\sinh{(t)}\,dt \end{align*}$ and we get

$\displaystyle \begin{align*} \frac{3}{2} \int{ \frac{2x + 3}{x^2 + 3x + 1} \, dx} - \frac{5}{2} \int{ \frac{1}{ \left( x + \frac{3}{2} \right) ^2 - \frac{5}{4} } \, dx} &= \frac{3}{2} \int{ \frac{1}{u}\,du } - \frac{5}{4} \int{ \frac{1}{\left[ \frac{\sqrt{5}}{2} \cosh{(t)} \right] ^2 - \frac{5}{4}} \, \frac{\sqrt{5}}{2}\sinh{(t)}\,dt } \\ &= \frac{3}{2} \ln{|u|} - \frac{5\sqrt{5}}{8} \int{ \frac{\sinh{(t)}}{\frac{5}{4} \left[ \cosh^2{(t)} - 1 \right]}\,dt } \\ &= \frac{3}{2} \ln{ \left| x^2 + 3x + 1 \right| } - \frac{\sqrt{5}}{2}\int{ \frac{\sinh{(t)}}{\sinh{(t)}}\,dt } \\ &= \frac{3}{2}\ln{ \left| x^2 + 3x + 1 \right| } - \frac{\sqrt{5}}{2} \int{ 1 \, dt} \\ &= \frac{3}{2} \ln{ \left| x^2 + 3x + 1 \right| } - \frac{\sqrt{5}}{2} t + C \\ &= \frac{3}{2} \ln{ \left| x^2 + 3x + 1 \right| } - \frac{\sqrt{5}}{2} \,\textrm{arcosh}\, { \left[ \frac{\sqrt{5} \, \left( 2x + 3 \right) }{5} \right] } + C \end{align*}$
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
2
Views
2K
  • · Replies 17 ·
Replies
17
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
4
Views
2K
Replies
1
Views
1K