John Baez's comments on CDT/Hořava-Lifshitz gravity.

  • Thread starter Thread starter MTd2
  • Start date Start date
  • Tags Tags
    Gravity
MTd2
Gold Member
Messages
2,019
Reaction score
25
https://www.physicsforums.com/showthread.php?p=3352208#post3352208

****************************

The abstract of the new Sotiriou-Visser-Weinfurtner paper sounds pretty explosive:

MTd2 said:
We explore the ultraviolet continuum regime of causal dynamical triangulations, as probed by the flow of the spectral dimension. We set up a framework in which one can find continuum theories that can fully reproduce the behaviour of the latter in this regime. In particular, we show that Hořava-Lifgarbagez gravity can mimic the flow of the spectral dimension in causal dynamical triangulations to high accuracy and over a wide range of scales. This seems to indicate that the two theories lie in the same universality class.
Because causal dynamical triangulations slices up spacetime into surfaces of "constant time", I'd always worried that it was quantizing not general relativity but some other theory - one that has a built-in separation between time and space. Hořava-Lifgarbagez gravity is such a theory. Wikipedia writes:

Hořava-Lifgarbagez gravity (or Hořava gravity) is a theory of quantum gravity proposed by Petr Hořava in 2009. It solves the problem of different concepts of time in quantum field theory and general relativity by treating the quantum concept as the more fundamental so that space and time are not equivalent (anisotropic). The relativistic concept of time with its Lorentz invariance emerges at large distances. The theory relies on the theory of foliations to produce its causal structure. It is related to topologically massive gravity and the Cotton tensor. It is a possible UV completion of general relativity. The novelty of this approach, compared to previous approaches to quantum gravity such as Loop quantum gravity, is that it uses concepts from condensed matter physics such as quantum critical phenomena.

Hořava's initial formulation was found to have side-effects such as predicting very different results for a spherical Sun compared to a slightly non-spherical Sun, so others have modified the theory. Inconsistencies remain.
How are the causal dynamical triangulations people reacting to the work of Sotiriou, Visser, and Weinfurtner? Do they agree that they may be quantizing Hořava-Lifgarbagez gravity?

I haven't been paying attention to this stuff, but I may find out the answer to this question when I go to Zurich tonight. I guess both Ambjorn and Loll will be there.

By the way, your posts listing these abstracts serve as a nice quick way to catch up on recent work in quantum gravity. Thanks! I don't want to seem like I'm completely out of the loop.

Hmm, here's what Ambjorn and Loll say in their new review article:

What is curious about the phase structure of four-dimensional CDT quantum gravity is its resemblance with that of Horava-Lifgarbagez gravity [17], which has been spelled out further in [18,19]. It gives rise to the intriguing conjecture that there may be a universal phase diagram governing systems of higher-dimensional, dynamical geometry, and accomodating a variety of gravity theories, some of which may be anisotropic in space and time.

To someone raised on relativity it would seem a painful step to admit one is quantizing a theory where there really is a single "right" notion of time, and Lorentz transformations are just a kind of approximate symmetry, good at macroscopic scales. Maybe they hope they can get at quantum general relativity as one point in the phase diagram of Horava-Lifgarbagez theories.
 
Physics news on Phys.org
Looks like there's lots of interesting stuff in Horava-Lifgarbagez still.

marcus has just listed a new paper from http://arxiv.org/abs/1106.2131" about Horava-Lifgarbagez in his biblioraphy.

http://arxiv.org/abs/1003.0009" .

According to Visser, Horava-Lifgarbagez is still http://arxiv.org/abs/1103.5587" .

Now, can someone tell me why http://arxiv.org/abs/1009.3094" working on AdS/CFT cite Gu and Wen?
 
Last edited by a moderator:
http://arxiv.org/abs/1002.3298" that draws a connection between noncritical strings in 2D and CDT...

Seems like everything's connected!
 
Last edited by a moderator:
I seem to notice a buildup of papers like this: Detecting single gravitons with quantum sensing. (OK, old one.) Toward graviton detection via photon-graviton quantum state conversion Is this akin to “we’re soon gonna put string theory to the test”, or are these legit? Mind, I’m not expecting anyone to read the papers and explain them to me, but if one of you educated people already have an opinion I’d like to hear it. If not please ignore me. EDIT: I strongly suspect it’s bunk but...
I'm trying to understand the relationship between the Higgs mechanism and the concept of inertia. The Higgs field gives fundamental particles their rest mass, but it doesn't seem to directly explain why a massive object resists acceleration (inertia). My question is: How does the Standard Model account for inertia? Is it simply taken as a given property of mass, or is there a deeper connection to the vacuum structure? Furthermore, how does the Higgs mechanism relate to broader concepts like...
Back
Top