Joint Probability From Correlation Function

Torkel
Messages
1
Reaction score
0
Dear all

I have the following problem. Given a set of correlated binary variables, can I determine the joint probability from the correlation function?

{Xi} is a set of binary variables
Pr(Xi=1) = p and Pr(Xi=0) = q for all i
Corr(Xi Xj) = cij

cij is symmetric

Now how can I determine the joint probability Pr({Xi, Xj, Xk ...})
For the joint probability of two variables I think I have the answer.
Noting that cij= (E(Xi Xj) - p2) / pq, and using the notation {Xi=xi,Xj=xi} -> {xi,xj}

I have
Pr( {1,1} )= E(Xi Xj) = p*q*cij + p2

and by symmetry
Pr( {0,0} ) = p*q*cij + q2

and Pr( {0,1} ) = Pr( {1,0} ) = ( 1-Pr({1,1})-Pr({0,0}) ) / 2 = p*q*(1- cij )
using that p+q = 1

How can I proceed to get Pr( {Xi,Xj, Xk} ), and generally Pr( {Xi,Xj, Xk, ….} )? I'm I missing something obvious? Any help or input is highly appreciated.

best
t
 
Last edited:
Physics news on Phys.org
You will need higher moments - the pairwise correlations are not enough for n>2. Look into Teugels (1990) ‘Some Representations of the Multivariate Bernoulli and Binomial Distributions’, where he provides a formulation for a general multivariate Bernoulli with dependencies, for n dimensions.

Omri.
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.

Similar threads

Replies
43
Views
5K
Replies
6
Views
2K
Replies
16
Views
3K
Replies
4
Views
2K
Replies
4
Views
3K
Replies
15
Views
4K
Replies
5
Views
1K
Replies
16
Views
2K
Replies
4
Views
1K
Back
Top