Josephson Effect Class Presentation

Click For Summary
The discussion focuses on preparing a class presentation on the Josephson effect in solid state physics. The presenter seeks to understand the topic without delving deeply into perturbation theory, as their background in quantum mechanics is basic. Key points include the importance of long-range correlations in superconductors and the potential for the Josephson effect to be observed in systems beyond superconductors, such as Bose-Einstein condensates. References to Feynman's lectures are recommended for a clearer understanding of the derivation. Overall, the presenter feels confident after finding a straightforward explanation in Feynman's work.
kq6up
Messages
366
Reaction score
13
I am working on a class presentation for my solid state physics class. I picked the topic of the Josephson effect. I would like to explain this phenomena in specific detail. However, the original paper and other material I have found quickly goes over my head as I have not been as far as perturbation theory in QM. I have a very solid grasp of basic QM, and I am wondering if it is possible to get at least a basic understanding of the Josephson effect in a day or so. Do I have to understand it in terms of perturbation? I was thinking it was a simple potential barrier when I picked the project. My rough draft is due next Wednesday. My professor said not to worry about the finer details, but I really want to wrestle with it. Is this possible for me to grasp in a couple of days? If so, could someone point me to a reference that unpacks it a little better than the general papers that I pull up using google.

Thanks,
Chris
 
Physics news on Phys.org
I don't think that the Josephson effect has anything to do with perturbation theory at all.
The basic characteristic of a superconductor is the appearance of non- vanishing long range correlations of the form ##\langle c^+(x) c^+(x') c(y) c(y') \rangle## where ##x\approx x'## and ##y' \approx y## but x and y may be separated by a large distance. The wording behind this correlation function is the correlation between the destruction of a Cooper pair ( ie. two electrons) at y and the creation of a cooper pair at x. This is most easily realized by bending the superconductor into a ring and giving the electron the chance to tunnel through a small barrier.
 
Have a look at the section on the Josephson effect in the Feynman lectures. The derivation is based on making a a couple of assumptions (which are easy to justify in the case of a superconductor) and then uses the Schroedinger equation to derive the Josephson effect formulas.

There are two things that is worth keeping in mind: The first is that Josephson effect is a very general phenomenon and is not limited to superconductors (it can also be observed in e,.g. Bose-Einstein condensates), the second (which sort of follows from the first) is that there are many different ways of the deriving the equations (the derivation used by Brian Josephson is actually rarely used) and which derivation is the most "physical" depends on which system you are studying (although all derivation will of course end up with the same result).
Josephson's original derivation was only valid for S-I-S junctions, if you are studying e.g. S-N-S junctions it might be better to think about is in terms of say Andreev states/reflections, or if you want to be less stringent BTK-formalism etc
 
Thanks, yes I just found Feynman's derivation, and it seems pretty straight forward. I will be delving into those tomorrow.

Regards,
Chris
 
Thread 'Unexpected irregular reflection signal from a high-finesse cavity'
I am observing an irregular, aperiodic noise pattern in the reflection signal of a high-finesse optical cavity (finesse ≈ 20,000). The cavity is normally operated using a standard Pound–Drever–Hall (PDH) locking configuration, where an EOM provides phase modulation. The signals shown in the attached figures were recorded with the modulation turned off. Under these conditions, when scanning the laser frequency across a cavity resonance, I expected to observe a simple reflection dip. Instead...

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
924
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 0 ·
Replies
0
Views
3K
  • · Replies 12 ·
Replies
12
Views
803
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K