Let [itex](U,V,\theta, \phi)[/itex] be Kruskal coordinates on the Kruskal manifold, where [tex]-UV=\left(\frac{r}{2m}-1\right)e^{r/2m},\hspace{1cm} t=2m\ln\left(\frac{-V}{U}\right)[/tex] and [itex]\theta[/itex] and [itex]\phi[/itex] are the usual polar angles. The metric is [tex]ds^2=\frac{-32m^3}{r}e^{\frac{-r}{2m}}dUdV+r^2d\Omega^2[/tex]. The vector [tex]\xi=-U\partial_U+V\partial_V[/tex] is a Killing vector.(adsbygoogle = window.adsbygoogle || []).push({});

I need to express [itex]\xi[/itex] in exterior Schwarzschild coordinates, however I'm not sure how to go about doing this. I guess I need to transform the basis vectors [itex]\partial_U[/itex] and [itex]\partial_V[/itex] into basis vectors in the Schwarzschild coordinates, but can't see how to, as U and V are defined implicitly.

Any help would be much appreciated!

**Physics Forums - The Fusion of Science and Community**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Killing vector in kruskal coordinates

Loading...

Similar Threads - Killing vector kruskal | Date |
---|---|

A Why is Killing vector field normal to Killing horizon? | Jan 26, 2018 |

General Relativity- geodesics, killing vector, Conserved quantity Schwarzschild metric | Jun 25, 2017 |

I Killing Vectors in 2D | Feb 22, 2017 |

The static Killing vectors in Kruskal coordinates | Apr 14, 2010 |

**Physics Forums - The Fusion of Science and Community**