MHB Kishan's question via email about an indefinite integral

AI Thread Summary
The discussion focuses on solving the integral of the function (54t - 12) divided by the product of (t - 9) and (t^2 - 2). The recommended method is to use Partial Fractions to decompose the integrand into simpler fractions. The coefficients A, B, and C are determined through substitution, yielding A = 6, B = -3, and C = -3. The final integral solution is expressed in terms of logarithms, ensuring that absolute values are included for each logarithmic term. The solution is confirmed to be correct with the necessary modulus signs in place.
Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
What is the $\displaystyle \begin{align*} \int{ \frac{54\,t - 12}{\left( t- 9 \right) \left( t^2 - 2 \right) } \,\mathrm{d}t } \end{align*}$

We should use Partial Fractions to simplify the integrand. The denominator can be factorised further as $\displaystyle \begin{align*} \int{ \frac{54\,t - 12}{ \left( t - 9 \right) \left( t - \sqrt{2} \right) \left( t + \sqrt{2} \right) } \,\mathrm{d}t } \end{align*}$, so that means the decomposition we should use is

$\displaystyle \begin{align*} \frac{A}{t - 9} + \frac{B}{t - \sqrt{2}} + \frac{C}{t + \sqrt{2}} &\equiv \frac{54\,t - 12}{\left( t - 9 \right) \left( t^2 - 2 \right) } \\ \frac{A\,\left( t - \sqrt{2} \right)\left( t + \sqrt{2} \right) + B\,\left( t - 9 \right) \left( t + \sqrt{2}\right) + C \,\left( t - 9 \right) \left( t - \sqrt{2} \right) }{ \left( t - 9 \right) \left( t - \sqrt{2} \right) \left( t + \sqrt{2} \right) } &\equiv \frac{54\,t - 12}{ \left( t - 9 \right) \left( t - \sqrt{2} \right) \left( t + \sqrt{2} \right) } \\ A\,\left( t - \sqrt{2} \right) \left( t + \sqrt{2} \right) + B \,\left( t - 9 \right) \left( t + \sqrt{2} \right) + C \,\left( t - 9 \right) \left( t - \sqrt{2} \right) &\equiv 54\,t - 12 \end{align*}$

Let $\displaystyle \begin{align*} t = 9 \end{align*}$ and we have $\displaystyle \begin{align*} 79\,A = 474 \implies A = 6 \end{align*}$.

Let $\displaystyle \begin{align*} t = \sqrt{2} \end{align*}$ and we have $\displaystyle \begin{align*} 2\,\sqrt{2} \,\left( \sqrt{2} - 9 \right)\,B = 54\,\sqrt{2} - 12 \implies \left( 4 - 18\,\sqrt{2} \right) \, B = 54\,\sqrt{2} - 12 \implies \left( 4 - 18\,\sqrt{2} \right) \, B = -3\,\left( 4 - 18\,\sqrt{2} \right) \implies B= -3 \end{align*}$.

Let $\displaystyle \begin{align*} t = -\sqrt{2} \end{align*}$ and we have $\displaystyle \begin{align*} -2\,\sqrt{2} \,\left( -\sqrt{2} - 9 \right) \, C = -54\,\sqrt{2} - 12 \implies \left( 4 + 18\,\sqrt{2} \right) \, C = -3\,\left( 4 + 18\,\sqrt{2} \right) \implies C = -3 \end{align*}$

So the integral becomes

$\displaystyle \begin{align*} \int{ \frac{54\,t - 12 }{ \left( t - 9 \right) \left( t - \sqrt{2} \right) \left( t + \sqrt{2} \right) } \,\mathrm{d}t } &= \int{ \left[ \frac{6}{t - 9} - \frac{3}{t - \sqrt{2}} - \frac{3}{t + \sqrt{2}} \right] \,\mathrm{d}t } \\ &= 6\ln{ \left| t - 9 \right| } - 3\ln{ \left| t - \sqrt{2} \right| } - 3\ln{ \left| t + \sqrt{2} \right| } + C \end{align*}$
 
Mathematics news on Phys.org
This is correct, however are
Prove It said:
What is the $\displaystyle \begin{align*} \int{ \frac{54\,t - 12}{\left( t- 9 \right) \left( t^2 - 2 \right) } \,\mathrm{d}t } \end{align*}$

We should use Partial Fractions to simplify the integrand. The denominator can be factorised further as $\displaystyle \begin{align*} \int{ \frac{54\,t - 12}{ \left( t - 9 \right) \left( t - \sqrt{2} \right) \left( t + \sqrt{2} \right) } \,\mathrm{d}t } \end{align*}$, so that means the decomposition we should use is

$\displaystyle \begin{align*} \frac{A}{t - 9} + \frac{B}{t - \sqrt{2}} + \frac{C}{t + \sqrt{2}} &\equiv \frac{54\,t - 12}{\left( t - 9 \right) \left( t^2 - 2 \right) } \\ \frac{A\,\left( t - \sqrt{2} \right)\left( t + \sqrt{2} \right) + B\,\left( t - 9 \right) \left( t + \sqrt{2}\right) + C \,\left( t - 9 \right) \left( t - \sqrt{2} \right) }{ \left( t - 9 \right) \left( t - \sqrt{2} \right) \left( t + \sqrt{2} \right) } &\equiv \frac{54\,t - 12}{ \left( t - 9 \right) \left( t - \sqrt{2} \right) \left( t + \sqrt{2} \right) } \\ A\,\left( t - \sqrt{2} \right) \left( t + \sqrt{2} \right) + B \,\left( t - 9 \right) \left( t + \sqrt{2} \right) + C \,\left( t - 9 \right) \left( t - \sqrt{2} \right) &\equiv 54\,t - 12 \end{align*}$

Let $\displaystyle \begin{align*} t = 9 \end{align*}$ and we have $\displaystyle \begin{align*} 79\,A = 474 \implies A = 6 \end{align*}$.

Let $\displaystyle \begin{align*} t = \sqrt{2} \end{align*}$ and we have $\displaystyle \begin{align*} 2\,\sqrt{2} \,\left( \sqrt{2} - 9 \right)\,B = 54\,\sqrt{2} - 12 \implies \left( 4 - 18\,\sqrt{2} \right) \, B = 54\,\sqrt{2} - 12 \implies \left( 4 - 18\,\sqrt{2} \right) \, B = -3\,\left( 4 - 18\,\sqrt{2} \right) \implies B= -3 \end{align*}$.

Let $\displaystyle \begin{align*} t = -\sqrt{2} \end{align*}$ and we have $\displaystyle \begin{align*} -2\,\sqrt{2} \,\left( -\sqrt{2} - 9 \right) \, C = -54\,\sqrt{2} - 12 \implies \left( 4 + 18\,\sqrt{2} \right) \, C = -3\,\left( 4 + 18\,\sqrt{2} \right) \implies C = -3 \end{align*}$

So the integral becomes

$\displaystyle \begin{align*} \int{ \frac{54\,t - 12 }{ \left( t - 9 \right) \left( t - \sqrt{2} \right) \left( t + \sqrt{2} \right) } \,\mathrm{d}t } &= \int{ \left[ \frac{6}{t - 9} - \frac{3}{t - \sqrt{2}} - \frac{3}{t + \sqrt{2}} \right] \,\mathrm{d}t } \\ &= 6\ln{ \left| t - 9 \right| } - 3\ln{ \left| t - \sqrt{2} \right| } - 3\ln{ \left| t + \sqrt{2} \right| } + C \end{align*}$

This is correct, however are you not missing the modulus sign on the last part of your solution? Is it not supposed to be;

$\displaystyle \begin{align*} \int{ \frac{54\,t - 12 }{ \left( t - 9 \right) \left( t - \sqrt{2} \right) \left( t + \sqrt{2} \right) } \,\mathrm{d}t } &= \int{ \left[ \frac{6}{t - 9} - \frac{3}{t - \sqrt{2}} - \frac{3}{t + \sqrt{2}} \right] \,\mathrm{d}t } \\ &= 6\ln{ \left| t - 9 \right| } - 3\ln{ \left|| t - \sqrt{2} \right|| } - 3\ln{ \left|| t + \sqrt{2} \right|| } + C \end{align*}$
 
chwala said:
This is correct, however are you not missing the modulus sign on the last part of your solution? Is it not supposed to be;

$\displaystyle \begin{align*} \int{ \frac{54\,t - 12 }{ \left( t - 9 \right) \left( t - \sqrt{2} \right) \left( t + \sqrt{2} \right) } \,\mathrm{d}t } &= \int{ \left[ \frac{6}{t - 9} - \frac{3}{t - \sqrt{2}} - \frac{3}{t + \sqrt{2}} \right] \,\mathrm{d}t } \\ &= 6\ln{ \left| t - 9 \right| } - 3\ln{ \left|| t - \sqrt{2} \right|| } - 3\ln{ \left|| t + \sqrt{2} \right|| } + C \end{align*}$
The given solution does have absolute value in each logarithm.

##\displaystyle 6\ln{ \left| \,t - 9\, \right| } - 3\ln{ \left| \, t - \sqrt{2} \, \right| } - 3\ln{ \left| \, t + \sqrt{2} \,\right| } + C ##
 
SammyS said:
The given solution does have absolute value in each logarithm.

##\displaystyle 6\ln{ \left| \,t - 9\, \right| } - 3\ln{ \left| \, t - \sqrt{2} \, \right| } - 3\ln{ \left| \, t + \sqrt{2} \,\right| } + C ##
Noted @SammyS
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top