MHB Kishan's question via email about an indefinite integral

Click For Summary
The discussion focuses on solving the integral of the function (54t - 12) divided by the product of (t - 9) and (t^2 - 2). The recommended method is to use Partial Fractions to decompose the integrand into simpler fractions. The coefficients A, B, and C are determined through substitution, yielding A = 6, B = -3, and C = -3. The final integral solution is expressed in terms of logarithms, ensuring that absolute values are included for each logarithmic term. The solution is confirmed to be correct with the necessary modulus signs in place.
Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
What is the $\displaystyle \begin{align*} \int{ \frac{54\,t - 12}{\left( t- 9 \right) \left( t^2 - 2 \right) } \,\mathrm{d}t } \end{align*}$

We should use Partial Fractions to simplify the integrand. The denominator can be factorised further as $\displaystyle \begin{align*} \int{ \frac{54\,t - 12}{ \left( t - 9 \right) \left( t - \sqrt{2} \right) \left( t + \sqrt{2} \right) } \,\mathrm{d}t } \end{align*}$, so that means the decomposition we should use is

$\displaystyle \begin{align*} \frac{A}{t - 9} + \frac{B}{t - \sqrt{2}} + \frac{C}{t + \sqrt{2}} &\equiv \frac{54\,t - 12}{\left( t - 9 \right) \left( t^2 - 2 \right) } \\ \frac{A\,\left( t - \sqrt{2} \right)\left( t + \sqrt{2} \right) + B\,\left( t - 9 \right) \left( t + \sqrt{2}\right) + C \,\left( t - 9 \right) \left( t - \sqrt{2} \right) }{ \left( t - 9 \right) \left( t - \sqrt{2} \right) \left( t + \sqrt{2} \right) } &\equiv \frac{54\,t - 12}{ \left( t - 9 \right) \left( t - \sqrt{2} \right) \left( t + \sqrt{2} \right) } \\ A\,\left( t - \sqrt{2} \right) \left( t + \sqrt{2} \right) + B \,\left( t - 9 \right) \left( t + \sqrt{2} \right) + C \,\left( t - 9 \right) \left( t - \sqrt{2} \right) &\equiv 54\,t - 12 \end{align*}$

Let $\displaystyle \begin{align*} t = 9 \end{align*}$ and we have $\displaystyle \begin{align*} 79\,A = 474 \implies A = 6 \end{align*}$.

Let $\displaystyle \begin{align*} t = \sqrt{2} \end{align*}$ and we have $\displaystyle \begin{align*} 2\,\sqrt{2} \,\left( \sqrt{2} - 9 \right)\,B = 54\,\sqrt{2} - 12 \implies \left( 4 - 18\,\sqrt{2} \right) \, B = 54\,\sqrt{2} - 12 \implies \left( 4 - 18\,\sqrt{2} \right) \, B = -3\,\left( 4 - 18\,\sqrt{2} \right) \implies B= -3 \end{align*}$.

Let $\displaystyle \begin{align*} t = -\sqrt{2} \end{align*}$ and we have $\displaystyle \begin{align*} -2\,\sqrt{2} \,\left( -\sqrt{2} - 9 \right) \, C = -54\,\sqrt{2} - 12 \implies \left( 4 + 18\,\sqrt{2} \right) \, C = -3\,\left( 4 + 18\,\sqrt{2} \right) \implies C = -3 \end{align*}$

So the integral becomes

$\displaystyle \begin{align*} \int{ \frac{54\,t - 12 }{ \left( t - 9 \right) \left( t - \sqrt{2} \right) \left( t + \sqrt{2} \right) } \,\mathrm{d}t } &= \int{ \left[ \frac{6}{t - 9} - \frac{3}{t - \sqrt{2}} - \frac{3}{t + \sqrt{2}} \right] \,\mathrm{d}t } \\ &= 6\ln{ \left| t - 9 \right| } - 3\ln{ \left| t - \sqrt{2} \right| } - 3\ln{ \left| t + \sqrt{2} \right| } + C \end{align*}$
 
Mathematics news on Phys.org
This is correct, however are
Prove It said:
What is the $\displaystyle \begin{align*} \int{ \frac{54\,t - 12}{\left( t- 9 \right) \left( t^2 - 2 \right) } \,\mathrm{d}t } \end{align*}$

We should use Partial Fractions to simplify the integrand. The denominator can be factorised further as $\displaystyle \begin{align*} \int{ \frac{54\,t - 12}{ \left( t - 9 \right) \left( t - \sqrt{2} \right) \left( t + \sqrt{2} \right) } \,\mathrm{d}t } \end{align*}$, so that means the decomposition we should use is

$\displaystyle \begin{align*} \frac{A}{t - 9} + \frac{B}{t - \sqrt{2}} + \frac{C}{t + \sqrt{2}} &\equiv \frac{54\,t - 12}{\left( t - 9 \right) \left( t^2 - 2 \right) } \\ \frac{A\,\left( t - \sqrt{2} \right)\left( t + \sqrt{2} \right) + B\,\left( t - 9 \right) \left( t + \sqrt{2}\right) + C \,\left( t - 9 \right) \left( t - \sqrt{2} \right) }{ \left( t - 9 \right) \left( t - \sqrt{2} \right) \left( t + \sqrt{2} \right) } &\equiv \frac{54\,t - 12}{ \left( t - 9 \right) \left( t - \sqrt{2} \right) \left( t + \sqrt{2} \right) } \\ A\,\left( t - \sqrt{2} \right) \left( t + \sqrt{2} \right) + B \,\left( t - 9 \right) \left( t + \sqrt{2} \right) + C \,\left( t - 9 \right) \left( t - \sqrt{2} \right) &\equiv 54\,t - 12 \end{align*}$

Let $\displaystyle \begin{align*} t = 9 \end{align*}$ and we have $\displaystyle \begin{align*} 79\,A = 474 \implies A = 6 \end{align*}$.

Let $\displaystyle \begin{align*} t = \sqrt{2} \end{align*}$ and we have $\displaystyle \begin{align*} 2\,\sqrt{2} \,\left( \sqrt{2} - 9 \right)\,B = 54\,\sqrt{2} - 12 \implies \left( 4 - 18\,\sqrt{2} \right) \, B = 54\,\sqrt{2} - 12 \implies \left( 4 - 18\,\sqrt{2} \right) \, B = -3\,\left( 4 - 18\,\sqrt{2} \right) \implies B= -3 \end{align*}$.

Let $\displaystyle \begin{align*} t = -\sqrt{2} \end{align*}$ and we have $\displaystyle \begin{align*} -2\,\sqrt{2} \,\left( -\sqrt{2} - 9 \right) \, C = -54\,\sqrt{2} - 12 \implies \left( 4 + 18\,\sqrt{2} \right) \, C = -3\,\left( 4 + 18\,\sqrt{2} \right) \implies C = -3 \end{align*}$

So the integral becomes

$\displaystyle \begin{align*} \int{ \frac{54\,t - 12 }{ \left( t - 9 \right) \left( t - \sqrt{2} \right) \left( t + \sqrt{2} \right) } \,\mathrm{d}t } &= \int{ \left[ \frac{6}{t - 9} - \frac{3}{t - \sqrt{2}} - \frac{3}{t + \sqrt{2}} \right] \,\mathrm{d}t } \\ &= 6\ln{ \left| t - 9 \right| } - 3\ln{ \left| t - \sqrt{2} \right| } - 3\ln{ \left| t + \sqrt{2} \right| } + C \end{align*}$

This is correct, however are you not missing the modulus sign on the last part of your solution? Is it not supposed to be;

$\displaystyle \begin{align*} \int{ \frac{54\,t - 12 }{ \left( t - 9 \right) \left( t - \sqrt{2} \right) \left( t + \sqrt{2} \right) } \,\mathrm{d}t } &= \int{ \left[ \frac{6}{t - 9} - \frac{3}{t - \sqrt{2}} - \frac{3}{t + \sqrt{2}} \right] \,\mathrm{d}t } \\ &= 6\ln{ \left| t - 9 \right| } - 3\ln{ \left|| t - \sqrt{2} \right|| } - 3\ln{ \left|| t + \sqrt{2} \right|| } + C \end{align*}$
 
chwala said:
This is correct, however are you not missing the modulus sign on the last part of your solution? Is it not supposed to be;

$\displaystyle \begin{align*} \int{ \frac{54\,t - 12 }{ \left( t - 9 \right) \left( t - \sqrt{2} \right) \left( t + \sqrt{2} \right) } \,\mathrm{d}t } &= \int{ \left[ \frac{6}{t - 9} - \frac{3}{t - \sqrt{2}} - \frac{3}{t + \sqrt{2}} \right] \,\mathrm{d}t } \\ &= 6\ln{ \left| t - 9 \right| } - 3\ln{ \left|| t - \sqrt{2} \right|| } - 3\ln{ \left|| t + \sqrt{2} \right|| } + C \end{align*}$
The given solution does have absolute value in each logarithm.

##\displaystyle 6\ln{ \left| \,t - 9\, \right| } - 3\ln{ \left| \, t - \sqrt{2} \, \right| } - 3\ln{ \left| \, t + \sqrt{2} \,\right| } + C ##
 
SammyS said:
The given solution does have absolute value in each logarithm.

##\displaystyle 6\ln{ \left| \,t - 9\, \right| } - 3\ln{ \left| \, t - \sqrt{2} \, \right| } - 3\ln{ \left| \, t + \sqrt{2} \,\right| } + C ##
Noted @SammyS
 
Good morning I have been refreshing my memory about Leibniz differentiation of integrals and found some useful videos from digital-university.org on YouTube. Although the audio quality is poor and the speaker proceeds a bit slowly, the explanations and processes are clear. However, it seems that one video in the Leibniz rule series is missing. While the videos are still present on YouTube, the referring website no longer exists but is preserved on the internet archive...

Similar threads

  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 4 ·
Replies
4
Views
11K
  • · Replies 2 ·
Replies
2
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 2 ·
Replies
2
Views
11K
  • · Replies 1 ·
Replies
1
Views
5K
  • · Replies 2 ·
Replies
2
Views
6K