MHB Kishan's question via email about an indefinite integral

Click For Summary
The discussion focuses on solving the integral of the function (54t - 12) divided by the product of (t - 9) and (t^2 - 2). The recommended method is to use Partial Fractions to decompose the integrand into simpler fractions. The coefficients A, B, and C are determined through substitution, yielding A = 6, B = -3, and C = -3. The final integral solution is expressed in terms of logarithms, ensuring that absolute values are included for each logarithmic term. The solution is confirmed to be correct with the necessary modulus signs in place.
Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
What is the $\displaystyle \begin{align*} \int{ \frac{54\,t - 12}{\left( t- 9 \right) \left( t^2 - 2 \right) } \,\mathrm{d}t } \end{align*}$

We should use Partial Fractions to simplify the integrand. The denominator can be factorised further as $\displaystyle \begin{align*} \int{ \frac{54\,t - 12}{ \left( t - 9 \right) \left( t - \sqrt{2} \right) \left( t + \sqrt{2} \right) } \,\mathrm{d}t } \end{align*}$, so that means the decomposition we should use is

$\displaystyle \begin{align*} \frac{A}{t - 9} + \frac{B}{t - \sqrt{2}} + \frac{C}{t + \sqrt{2}} &\equiv \frac{54\,t - 12}{\left( t - 9 \right) \left( t^2 - 2 \right) } \\ \frac{A\,\left( t - \sqrt{2} \right)\left( t + \sqrt{2} \right) + B\,\left( t - 9 \right) \left( t + \sqrt{2}\right) + C \,\left( t - 9 \right) \left( t - \sqrt{2} \right) }{ \left( t - 9 \right) \left( t - \sqrt{2} \right) \left( t + \sqrt{2} \right) } &\equiv \frac{54\,t - 12}{ \left( t - 9 \right) \left( t - \sqrt{2} \right) \left( t + \sqrt{2} \right) } \\ A\,\left( t - \sqrt{2} \right) \left( t + \sqrt{2} \right) + B \,\left( t - 9 \right) \left( t + \sqrt{2} \right) + C \,\left( t - 9 \right) \left( t - \sqrt{2} \right) &\equiv 54\,t - 12 \end{align*}$

Let $\displaystyle \begin{align*} t = 9 \end{align*}$ and we have $\displaystyle \begin{align*} 79\,A = 474 \implies A = 6 \end{align*}$.

Let $\displaystyle \begin{align*} t = \sqrt{2} \end{align*}$ and we have $\displaystyle \begin{align*} 2\,\sqrt{2} \,\left( \sqrt{2} - 9 \right)\,B = 54\,\sqrt{2} - 12 \implies \left( 4 - 18\,\sqrt{2} \right) \, B = 54\,\sqrt{2} - 12 \implies \left( 4 - 18\,\sqrt{2} \right) \, B = -3\,\left( 4 - 18\,\sqrt{2} \right) \implies B= -3 \end{align*}$.

Let $\displaystyle \begin{align*} t = -\sqrt{2} \end{align*}$ and we have $\displaystyle \begin{align*} -2\,\sqrt{2} \,\left( -\sqrt{2} - 9 \right) \, C = -54\,\sqrt{2} - 12 \implies \left( 4 + 18\,\sqrt{2} \right) \, C = -3\,\left( 4 + 18\,\sqrt{2} \right) \implies C = -3 \end{align*}$

So the integral becomes

$\displaystyle \begin{align*} \int{ \frac{54\,t - 12 }{ \left( t - 9 \right) \left( t - \sqrt{2} \right) \left( t + \sqrt{2} \right) } \,\mathrm{d}t } &= \int{ \left[ \frac{6}{t - 9} - \frac{3}{t - \sqrt{2}} - \frac{3}{t + \sqrt{2}} \right] \,\mathrm{d}t } \\ &= 6\ln{ \left| t - 9 \right| } - 3\ln{ \left| t - \sqrt{2} \right| } - 3\ln{ \left| t + \sqrt{2} \right| } + C \end{align*}$
 
Mathematics news on Phys.org
This is correct, however are
Prove It said:
What is the $\displaystyle \begin{align*} \int{ \frac{54\,t - 12}{\left( t- 9 \right) \left( t^2 - 2 \right) } \,\mathrm{d}t } \end{align*}$

We should use Partial Fractions to simplify the integrand. The denominator can be factorised further as $\displaystyle \begin{align*} \int{ \frac{54\,t - 12}{ \left( t - 9 \right) \left( t - \sqrt{2} \right) \left( t + \sqrt{2} \right) } \,\mathrm{d}t } \end{align*}$, so that means the decomposition we should use is

$\displaystyle \begin{align*} \frac{A}{t - 9} + \frac{B}{t - \sqrt{2}} + \frac{C}{t + \sqrt{2}} &\equiv \frac{54\,t - 12}{\left( t - 9 \right) \left( t^2 - 2 \right) } \\ \frac{A\,\left( t - \sqrt{2} \right)\left( t + \sqrt{2} \right) + B\,\left( t - 9 \right) \left( t + \sqrt{2}\right) + C \,\left( t - 9 \right) \left( t - \sqrt{2} \right) }{ \left( t - 9 \right) \left( t - \sqrt{2} \right) \left( t + \sqrt{2} \right) } &\equiv \frac{54\,t - 12}{ \left( t - 9 \right) \left( t - \sqrt{2} \right) \left( t + \sqrt{2} \right) } \\ A\,\left( t - \sqrt{2} \right) \left( t + \sqrt{2} \right) + B \,\left( t - 9 \right) \left( t + \sqrt{2} \right) + C \,\left( t - 9 \right) \left( t - \sqrt{2} \right) &\equiv 54\,t - 12 \end{align*}$

Let $\displaystyle \begin{align*} t = 9 \end{align*}$ and we have $\displaystyle \begin{align*} 79\,A = 474 \implies A = 6 \end{align*}$.

Let $\displaystyle \begin{align*} t = \sqrt{2} \end{align*}$ and we have $\displaystyle \begin{align*} 2\,\sqrt{2} \,\left( \sqrt{2} - 9 \right)\,B = 54\,\sqrt{2} - 12 \implies \left( 4 - 18\,\sqrt{2} \right) \, B = 54\,\sqrt{2} - 12 \implies \left( 4 - 18\,\sqrt{2} \right) \, B = -3\,\left( 4 - 18\,\sqrt{2} \right) \implies B= -3 \end{align*}$.

Let $\displaystyle \begin{align*} t = -\sqrt{2} \end{align*}$ and we have $\displaystyle \begin{align*} -2\,\sqrt{2} \,\left( -\sqrt{2} - 9 \right) \, C = -54\,\sqrt{2} - 12 \implies \left( 4 + 18\,\sqrt{2} \right) \, C = -3\,\left( 4 + 18\,\sqrt{2} \right) \implies C = -3 \end{align*}$

So the integral becomes

$\displaystyle \begin{align*} \int{ \frac{54\,t - 12 }{ \left( t - 9 \right) \left( t - \sqrt{2} \right) \left( t + \sqrt{2} \right) } \,\mathrm{d}t } &= \int{ \left[ \frac{6}{t - 9} - \frac{3}{t - \sqrt{2}} - \frac{3}{t + \sqrt{2}} \right] \,\mathrm{d}t } \\ &= 6\ln{ \left| t - 9 \right| } - 3\ln{ \left| t - \sqrt{2} \right| } - 3\ln{ \left| t + \sqrt{2} \right| } + C \end{align*}$

This is correct, however are you not missing the modulus sign on the last part of your solution? Is it not supposed to be;

$\displaystyle \begin{align*} \int{ \frac{54\,t - 12 }{ \left( t - 9 \right) \left( t - \sqrt{2} \right) \left( t + \sqrt{2} \right) } \,\mathrm{d}t } &= \int{ \left[ \frac{6}{t - 9} - \frac{3}{t - \sqrt{2}} - \frac{3}{t + \sqrt{2}} \right] \,\mathrm{d}t } \\ &= 6\ln{ \left| t - 9 \right| } - 3\ln{ \left|| t - \sqrt{2} \right|| } - 3\ln{ \left|| t + \sqrt{2} \right|| } + C \end{align*}$
 
chwala said:
This is correct, however are you not missing the modulus sign on the last part of your solution? Is it not supposed to be;

$\displaystyle \begin{align*} \int{ \frac{54\,t - 12 }{ \left( t - 9 \right) \left( t - \sqrt{2} \right) \left( t + \sqrt{2} \right) } \,\mathrm{d}t } &= \int{ \left[ \frac{6}{t - 9} - \frac{3}{t - \sqrt{2}} - \frac{3}{t + \sqrt{2}} \right] \,\mathrm{d}t } \\ &= 6\ln{ \left| t - 9 \right| } - 3\ln{ \left|| t - \sqrt{2} \right|| } - 3\ln{ \left|| t + \sqrt{2} \right|| } + C \end{align*}$
The given solution does have absolute value in each logarithm.

##\displaystyle 6\ln{ \left| \,t - 9\, \right| } - 3\ln{ \left| \, t - \sqrt{2} \, \right| } - 3\ln{ \left| \, t + \sqrt{2} \,\right| } + C ##
 
SammyS said:
The given solution does have absolute value in each logarithm.

##\displaystyle 6\ln{ \left| \,t - 9\, \right| } - 3\ln{ \left| \, t - \sqrt{2} \, \right| } - 3\ln{ \left| \, t + \sqrt{2} \,\right| } + C ##
Noted @SammyS
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 4 ·
Replies
4
Views
11K
  • · Replies 2 ·
Replies
2
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 2 ·
Replies
2
Views
11K
  • · Replies 1 ·
Replies
1
Views
5K
  • · Replies 2 ·
Replies
2
Views
5K