MHB Kunal's question at Yahoo Answers regarding Lagrange multipliers

AI Thread Summary
The discussion focuses on using Lagrange multipliers to minimize the product ab on the curve defined by y = e^(4x). The objective function is f(a, b) = ab, with the constraint g(a, b) = b - e^(4a) = 0. The solution process leads to the critical point (a, b) = (-1/4, 1/e), yielding a minimum value of f(-1/4, 1/e) = -1/(4e). It is noted that this minimum is less than the value at another point on the constraint, confirming the solution. The final conclusion is that the minimum value of ab is -1/(4e).
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Use Lagrange multipliers to find the point (a,b) on the graph of y=e^{4 x}, where the value ab is minimal?

Use Lagrange multipliers to find the point (a,b) on the graph of y=e^{4 x}, where the value ab is as small as possible.

I know how to use lagrange multipliers but it isn't working when I follow the formula.

Please help,

Thanks.

I have posted a link there to this thread so the OP can view my work.
 
Mathematics news on Phys.org
Hello Kunal,

We are given the objective function:

$$f(a,b)=ab$$

Subject to the contraint:

$$g(a,b)=b-e^{4a}=0$$

Using Lagrange multipliers, we obtain the system:

$$b=\lambda\left(-4e^{4a} \right)$$

$$a=\lambda(1)$$

And so we find:

$$\lambda=a=-\frac{b}{4e^{4a}}\implies b=-4ae^{4a}$$

Now, substituting for $b$ into the constraint, there results:

$$-4ae^{4a}-e^{4a}=0$$

Divide through by $-e^{4a}\ne0$:

$$4a+1=0\implies a=-\frac{1}{4}$$

Hence:

$$b=e^{-1}=\frac{1}{e}$$

And so we find the value of the objective function at this point is:

$$f\left(-\frac{1}{4},\frac{1}{e} \right)=-\frac{1}{4e}$$

If we observe that at another point on the constraint, such as $\left(0,1 \right)$, we have:

$$f(0,1)=0$$

Since this is greater than the objective function's value at the critical point we found, we can then conclude with assurance that:

$$f_{\min}=-\frac{1}{4e}$$
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top