MHB Kunal's question at Yahoo Answers regarding Lagrange multipliers

Click For Summary
The discussion focuses on using Lagrange multipliers to minimize the product ab on the curve defined by y = e^(4x). The objective function is f(a, b) = ab, with the constraint g(a, b) = b - e^(4a) = 0. The solution process leads to the critical point (a, b) = (-1/4, 1/e), yielding a minimum value of f(-1/4, 1/e) = -1/(4e). It is noted that this minimum is less than the value at another point on the constraint, confirming the solution. The final conclusion is that the minimum value of ab is -1/(4e).
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Use Lagrange multipliers to find the point (a,b) on the graph of y=e^{4 x}, where the value ab is minimal?

Use Lagrange multipliers to find the point (a,b) on the graph of y=e^{4 x}, where the value ab is as small as possible.

I know how to use lagrange multipliers but it isn't working when I follow the formula.

Please help,

Thanks.

I have posted a link there to this thread so the OP can view my work.
 
Mathematics news on Phys.org
Hello Kunal,

We are given the objective function:

$$f(a,b)=ab$$

Subject to the contraint:

$$g(a,b)=b-e^{4a}=0$$

Using Lagrange multipliers, we obtain the system:

$$b=\lambda\left(-4e^{4a} \right)$$

$$a=\lambda(1)$$

And so we find:

$$\lambda=a=-\frac{b}{4e^{4a}}\implies b=-4ae^{4a}$$

Now, substituting for $b$ into the constraint, there results:

$$-4ae^{4a}-e^{4a}=0$$

Divide through by $-e^{4a}\ne0$:

$$4a+1=0\implies a=-\frac{1}{4}$$

Hence:

$$b=e^{-1}=\frac{1}{e}$$

And so we find the value of the objective function at this point is:

$$f\left(-\frac{1}{4},\frac{1}{e} \right)=-\frac{1}{4e}$$

If we observe that at another point on the constraint, such as $\left(0,1 \right)$, we have:

$$f(0,1)=0$$

Since this is greater than the objective function's value at the critical point we found, we can then conclude with assurance that:

$$f_{\min}=-\frac{1}{4e}$$
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
1
Views
2K
Replies
1
Views
2K
Replies
3
Views
2K
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K