A Lagrange-D’Alembert Principle and random ODE

AI Thread Summary
The discussion centers on the Lagrange-D'Alembert Principle and its generalization to mechanics-like ordinary differential equations (ODE) in Banach spaces. The author invites criticism and comments on their paper, which explores applications such as geodesics in infinite-dimensional manifolds and random ODEs with nonholonomic constraints. Additionally, there is a suggestion to relate the principle to quantum mechanics, particularly regarding the time evolution described by the Schrödinger equation. The author references their previous work to support this exploration. Overall, the conversation emphasizes the intersection of classical mechanics and quantum mechanics through advanced mathematical frameworks.
wrobel
Science Advisor
Insights Author
Messages
1,120
Reaction score
978
Here is my paper. A criticism and other comments are welcome.

Abstract: The Lagrange-D'Alembert Principle is one of the fundamental tools of classical mechanics. We generalize this principle to mechanics-like ODE in Banach spaces.
As an application we discuss geodesics in infinite dimensional manifolds and a random ODE with nonholonomic constraint.

https://arxiv.org/abs/2112.05276v3
 
  • Like
Likes ergospherical, Delta2 and vanhees71
Physics news on Phys.org
Interesting.

In Quantum mechanics, the time evolution given by the Schrodinger equation can be restated as a infinite dimensional (classical) Hamiltonian system (at least for the discrete spectrum case). So I wonder if you could state a Lagrange-D'Alembert principle for QM

I give a review of the above statement in https://arxiv.org/abs/2107.07050
 
Thread 'Question about pressure of a liquid'
I am looking at pressure in liquids and I am testing my idea. The vertical tube is 100m, the contraption is filled with water. The vertical tube is very thin(maybe 1mm^2 cross section). The area of the base is ~100m^2. Will he top half be launched in the air if suddenly it cracked?- assuming its light enough. I want to test my idea that if I had a thin long ruber tube that I lifted up, then the pressure at "red lines" will be high and that the $force = pressure * area$ would be massive...
I feel it should be solvable we just need to find a perfect pattern, and there will be a general pattern since the forces acting are based on a single function, so..... you can't actually say it is unsolvable right? Cause imaging 3 bodies actually existed somwhere in this universe then nature isn't gonna wait till we predict it! And yea I have checked in many places that tiny changes cause large changes so it becomes chaos........ but still I just can't accept that it is impossible to solve...
Hello! I am generating electrons from a 3D gaussian source. The electrons all have the same energy, but the direction is isotropic. The electron source is in between 2 plates that act as a capacitor, and one of them acts as a time of flight (tof) detector. I know the voltage on the plates very well, and I want to extract the center of the gaussian distribution (in one direction only), by measuring the tof of many electrons. So the uncertainty on the position is given by the tof uncertainty...
Back
Top