A Lagrange-D’Alembert Principle and random ODE

AI Thread Summary
The discussion centers on the Lagrange-D'Alembert Principle and its generalization to mechanics-like ordinary differential equations (ODE) in Banach spaces. The author invites criticism and comments on their paper, which explores applications such as geodesics in infinite-dimensional manifolds and random ODEs with nonholonomic constraints. Additionally, there is a suggestion to relate the principle to quantum mechanics, particularly regarding the time evolution described by the Schrödinger equation. The author references their previous work to support this exploration. Overall, the conversation emphasizes the intersection of classical mechanics and quantum mechanics through advanced mathematical frameworks.
wrobel
Science Advisor
Insights Author
Messages
1,153
Reaction score
993
Here is my paper. A criticism and other comments are welcome.

Abstract: The Lagrange-D'Alembert Principle is one of the fundamental tools of classical mechanics. We generalize this principle to mechanics-like ODE in Banach spaces.
As an application we discuss geodesics in infinite dimensional manifolds and a random ODE with nonholonomic constraint.

https://arxiv.org/abs/2112.05276v3
 
  • Like
Likes ergospherical, Delta2 and vanhees71
Physics news on Phys.org
Interesting.

In Quantum mechanics, the time evolution given by the Schrodinger equation can be restated as a infinite dimensional (classical) Hamiltonian system (at least for the discrete spectrum case). So I wonder if you could state a Lagrange-D'Alembert principle for QM

I give a review of the above statement in https://arxiv.org/abs/2107.07050
 
Thread 'Gauss' law seems to imply instantaneous electric field propagation'
Imagine a charged sphere at the origin connected through an open switch to a vertical grounded wire. We wish to find an expression for the horizontal component of the electric field at a distance ##\mathbf{r}## from the sphere as it discharges. By using the Lorenz gauge condition: $$\nabla \cdot \mathbf{A} + \frac{1}{c^2}\frac{\partial \phi}{\partial t}=0\tag{1}$$ we find the following retarded solutions to the Maxwell equations If we assume that...
Dear all, in an encounter of an infamous claim by Gerlich and Tscheuschner that the Greenhouse effect is inconsistent with the 2nd law of thermodynamics I came to a simple thought experiment which I wanted to share with you to check my understanding and brush up my knowledge. The thought experiment I tried to calculate through is as follows. I have a sphere (1) with radius ##r##, acting like a black body at a temperature of exactly ##T_1 = 500 K##. With Stefan-Boltzmann you can calculate...
Thread 'Griffith, Electrodynamics, 4th Edition, Example 4.8. (First part)'
I am reading the Griffith, Electrodynamics book, 4th edition, Example 4.8 and stuck at some statements. It's little bit confused. > Example 4.8. Suppose the entire region below the plane ##z=0## in Fig. 4.28 is filled with uniform linear dielectric material of susceptibility ##\chi_e##. Calculate the force on a point charge ##q## situated a distance ##d## above the origin. Solution : The surface bound charge on the ##xy## plane is of opposite sign to ##q##, so the force will be...
Back
Top