Lagrangian Mechanics - Kepler problem, Conservation

bigguccisosa
Messages
24
Reaction score
3

Homework Statement


Attached.

Homework Equations


I am assuming the coordinate transformation is \vec{x}' = \vec{x} + \alpha\vec{\gamma} ?
Then you have \vec{v}' = \vec{v} + \alpha\frac{d\vec{\gamma}}{dt}
And r is the magnitude of the x vector.

The Attempt at a Solution


Part A.
So to get the change in lagrangian, I put the primed v and x into the Lagrangian and subtracted the given lagrangian to get:
\Delta L = \frac{1}{2}m|\vec{v} + \alpha\frac{d\vec{\gamma}}{dt}|^2 + \frac{k}{|\vec{x} + \alpha\vec{\gamma}|} - \frac{1}{2}m|v|^2 - \frac{k}{r}

So following examples from class, I expand the vector magnitude terms and neglected the second order alpha quantity, which leaves me with

\Delta L = \frac{1}{2}m(2\alpha \vec{v} \cdot \frac{d\vec{\gamma}}{dt}) + \frac{k}{\sqrt{|\vec{x}|^2 + 2 \vec{x}\cdot\alpha\vec{\gamma}}} - \frac{k}{r}

So I thought maybe to taylor expand the first k/r term up to first order alpha, after factoring out |\vec{x}|^2. And since |x| is r, i can cancel out the last k/r term. That leaves me with
\Delta L = m(\alpha \vec{v} \cdot \frac{d\vec{\gamma}}{dt}) - \frac{k\alpha}{|\vec{x}|^3}(\vec{x}\cdot\vec{\gamma})

Now taking the derivative of gamma, and noting that dn/dt should be zero and that p cross dx/dt and dp/dt cross x should also be zero, I get for the final expression, plugging everything in

\Delta L = m\alpha[\vec{v} \cdot [\frac{d\vec{x}}{dt}\times( \vec{p}\times\hat{n}) + \vec{x} \times (\frac{d\vec{p}}{dt} \times \hat{n})]] - \frac{k\alpha}{|\vec{x}|^3} [\vec{x} \cdot [\hat{n} \times (\vec{p} \times \vec{x}) + \vec{x} \times (\vec{p} \times \hat{n})]]

But from here, I don't really see how I could get it to equal part b, or if I even did the right process, I probably made a mistake in getting the difference, any tips?
 

Attachments

  • a3.PNG
    a3.PNG
    26.6 KB · Views: 866
Last edited:
Physics news on Phys.org
Just wanted to update saying I have solved this so it doesn't stay unanswered, by applying the BAC - CAB rule and then replacing dp/dt with the force you find from the given potential.
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top