Lagrangian of a double pendulum, finding kinetic energy

P Felds
Messages
2
Reaction score
1
Homework Statement
Find the lagrangian of the double pendulum, kinetic energy
Relevant Equations
L=T-U
This is from Taylor's classical mechanichs, 11.4, example of finding the Lagrangian of the double pendulum
Relevant figure attached below
Angle between the two velocities of second mass is
$$\phi_2-\phi_1$$
Potential energy
$$U_1=m_1gL_1$$
$$U_2=m_2g[L_1\cos(1-\phi_1)+L_2(1-\phi_2)]$$
$$(U\phi_1,phi_2)=m_1gL_1+m_2g[L_1\cos(1-\phi_1)+L_2(1-\phi_2)]$$
Kinetic energy of the second mass in the double pendulum
$$T_1=\frac{1}{2}m_1L_1^2\dot\phi_1^2$$
$$T_2=\frac{1}{2} m_2[L_1^2\dot\phi_1^2+2L_1L_2\dot\phi_2\dot\phi_1\cos(\phi_1-\phi_2)+L_2^2\dot\phi_2^2]$$
Where $$ T_2=\frac{1}{2}m_2(v_1+L_2\dot\phi_2)^2$$
I am trouble understanding the cos term here. Does it come from the unit vector? Can someone explain why it's involved, because I could not follow why it's here after squaring the velocity for the second kinetic energy
$$2L_1L_2\dot\phi_2\dot\phi_1\cos(\phi_1-\phi_2)$$
 

Attachments

  • 20220222_155648.jpg
    20220222_155648.jpg
    19.4 KB · Views: 169
Last edited:
Physics news on Phys.org
If you want to understand where the KE of the second mass comes from, then start with the position of the second mass: $$(x, y) = (L_1\sin \phi_1 +L_2 \sin \phi_2, L_1\cos \phi_1 + L_2\cos \phi_2)$$Then differentiate.

The ##\cos(\phi_1 - \phi_2)## term arises from the relevant trig identity for a cosine of a difference of angles.
 
  • Like
Likes vanhees71 and P Felds
Thank you very much
 
You get the velocity of the second particle by adding the two contributions ##L_1 \dot{\phi}_1## (varying ##\phi_1## whilst keeping ##\phi_2## fixed) and ##L_2 \dot{\phi}_2## (varying ##\phi_2## whilst keeping ##\phi_1## fixed) vectorially. Joining the vectors tip to tail, the angle between them is ##\pi - (\phi_2 - \phi_1)## so cosine rule states ##v^2 = L_1^2 \dot{\phi}_1^2 + L_2^2 \dot{\phi}_2^2 + 2L_1 L_2 \dot{\phi}_1 \dot{\phi}_2 \cos{(\phi_2 - \phi_1)}##.
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top