MHB Laplace equation and Median Value Property

Julio1
Messages
66
Reaction score
0
Suppose that $u$ is the solution of the Laplace equation

$u_{xx}+u_{yy}=0$ in $\{(x,y)\in \mathbb{R}^2: x^2+y^2<1\}$

$u(x,y)=x$ for all $(x,y)\in \mathbb{R}^2$ such that $x^2+y^2=1.$

Find the value of $u$ in $(0,0).$ Use the property of median value.
Hello. The median value is $u(x)=\dfrac{\displaystyle\int_{\partial B(x,r)} u(y)dS(y)}{\displaystyle\int_{\partial B(x,r)} \, dS(y)}$. But how can apply for this case?
 
Physics news on Phys.org
Hello :). I don't can solve this... Can any help me?
 
Thread 'Direction Fields and Isoclines'
I sketched the isoclines for $$ m=-1,0,1,2 $$. Since both $$ \frac{dy}{dx} $$ and $$ D_{y} \frac{dy}{dx} $$ are continuous on the square region R defined by $$ -4\leq x \leq 4, -4 \leq y \leq 4 $$ the existence and uniqueness theorem guarantees that if we pick a point in the interior that lies on an isocline there will be a unique differentiable function (solution) passing through that point. I understand that a solution exists but I unsure how to actually sketch it. For example, consider a...
Back
Top