A Laplace equation- variable domain

chimay
Messages
81
Reaction score
8
Hi,
I need to solve Laplace equation ## \nabla ^2 \Phi(z,r)=0## in cylindrical coordinates in the domain ## r_1<r<r_2 ##, ## 0<z<L ##.
The boundary conditions are:
##
\left\{
\begin{aligned}
&\Phi(0,r)=V_B \\
&\Phi(L,r)=V_P \\
& -{C^{'}}_{ox} \Phi(x,r_2)=C_0 \frac{\partial \Phi(x,r)}{\partial r}\rvert_{r=r_2} \\
&\frac{\partial \Phi(x,r)}{\partial r}\rvert_{r=r_1}=0 \\
\end{aligned}
\right.
##
By separation of variables I obtain:
##\Phi_(z,r)=(A e^{-\lambda z} + B e^{+\lambda z})(C J_0(\lambda r) + D Y_0(\lambda r))
##
##J_0## and ##Y_0## being zero order first type and second type Bessel functions.
The general solution is:
##\Phi_{tot}= \sum_m (A_m e^{-\lambda_m z} + B_m e^{+\lambda_m z})(C_m J_0(\lambda_m r) + D_m Y_0(\lambda_m r)) ##
and all the constants che can be calculated exploiting the boundary conditions.

Now assume ##L## is not fixed, but it can vary in a certain range ##0<L_1<L<L_2##. What I am thinking about is: is it possible to compute ##L## such that \frac{\partial \Phi_{tot}}{\partial z} \rvert_{z=L} =0?

Thank you!
 
Physics news on Phys.org
yes, you have the solution written, just take the derivative and find the solution
 
Form the boundary conditions I can write
<br /> \Phi_m=(\exp(\lambda_m z)+B_m \exp(-\lambda_m z) )C_m F_m(r)<br />
where ##F_m## is a function independent from ##L## and
<br /> \begin{cases}<br /> B_m=\frac{(K_{Bm}/K_{Pm}) \exp(\lambda_m L)-1}{1- (K_{Bm}/K_{Pm}) \exp(-\lambda_m L)} \\<br /> C_m=\frac{K_{Pm}-K_{Bm} \exp(-\lambda_m L)}{2 K_{1m} \sinh{\lambda_m L}}<br /> \end{cases}<br />
##K_{Pm}, K_{Bm}## and ##K_{1m}## being constants.
By computing ## \frac{\partial \Phi_{tot}}{\partial z} \rvert_{z=L} =0 ## I get
<br /> \sum_m \lambda_m (\exp{\lambda_m L} - B_m \exp{-\lambda_m L}) C_m F_m(r) = 0<br />
How can I solve this equation? Note that ##L## must not be ##m-##dependent.

Thank you for your interest.
 

Similar threads

Replies
6
Views
2K
Replies
4
Views
3K
Replies
4
Views
1K
Replies
20
Views
3K
Replies
4
Views
961
Replies
13
Views
3K
Replies
1
Views
581
Back
Top