- #1
patric44
- 308
- 40
- Homework Statement
- find Laplace transform of e^(at)/t
- Relevant Equations
- L(e^at/t)
hi guys
i am facing a little problem calculating this Laplace transform ## \mathscr{L}(\frac{e^{\alpha t}}{t})## , when calculate it using the method of the inverse Laplace transform its equal to
$$ ln{\frac{1}{s-\alpha}}$$
but then when i try to use the theorem
$$ \mathscr{L}(\frac{f(t)}{t})=\int_{s}^{\infty}F(s)ds=\int_{s}^{\infty}\mathscr{L}(f(t))ds = \int_{s}^{\infty}\frac{1}{s-\alpha}ds$$
$$=lim_{s→∞}(s-\alpha)-ln(|s-\alpha|)$$
it seems that there is a term that will blow up to infinity!
what i am missing here?!
i am facing a little problem calculating this Laplace transform ## \mathscr{L}(\frac{e^{\alpha t}}{t})## , when calculate it using the method of the inverse Laplace transform its equal to
$$ ln{\frac{1}{s-\alpha}}$$
but then when i try to use the theorem
$$ \mathscr{L}(\frac{f(t)}{t})=\int_{s}^{\infty}F(s)ds=\int_{s}^{\infty}\mathscr{L}(f(t))ds = \int_{s}^{\infty}\frac{1}{s-\alpha}ds$$
$$=lim_{s→∞}(s-\alpha)-ln(|s-\alpha|)$$
it seems that there is a term that will blow up to infinity!
what i am missing here?!
Last edited by a moderator: