QuantumMech
- 16
- 0
I need to take the \nabla^2 of x^2+y^2+z^2. This is how far I got
<br /> \begin{gather*}<br /> \nabla^2 = \frac{d^2}{dr^2} + \frac{2}{r} \frac{d}{dr} + \frac{1}{r^2}(\frac{1}{sin^2\theta}\frac{d^2}{d\Phi^2} + \frac{1}{sin\theta}\frac{d}{d\theta} sin\theta\frac{d}{d\theta})\\<br /> \nabla^2(r^2sin^2\theta cos^2\Phi + r^2sin^2\theta sin^2\Phi + r^2cos^2\theta = \frac{1}{sin\theta} \frac{d}{d\theta}(sin\theta \frac{d}{d\theta}) + \frac{1}{sin^2\theta} \frac{d^2}{d\Phi^2})<br /> \end{gather*}<br />
Also, can degeneracy occur with n not in order? Like for a part. in 3D box can degeneracy occur for \Psi_{1,3,5} \Psi_{5,3,1} or do the n have to be next each other like \Psi_{1,2,1} \Psi_{2,1,1}?
<br /> \begin{gather*}<br /> \nabla^2 = \frac{d^2}{dr^2} + \frac{2}{r} \frac{d}{dr} + \frac{1}{r^2}(\frac{1}{sin^2\theta}\frac{d^2}{d\Phi^2} + \frac{1}{sin\theta}\frac{d}{d\theta} sin\theta\frac{d}{d\theta})\\<br /> \nabla^2(r^2sin^2\theta cos^2\Phi + r^2sin^2\theta sin^2\Phi + r^2cos^2\theta = \frac{1}{sin\theta} \frac{d}{d\theta}(sin\theta \frac{d}{d\theta}) + \frac{1}{sin^2\theta} \frac{d^2}{d\Phi^2})<br /> \end{gather*}<br />
Also, can degeneracy occur with n not in order? Like for a part. in 3D box can degeneracy occur for \Psi_{1,3,5} \Psi_{5,3,1} or do the n have to be next each other like \Psi_{1,2,1} \Psi_{2,1,1}?