espen180
- 831
- 2
Something occurred to me just now. A question about the scalar potential.
First I will do some calculations of the laplacian of the scalar potential in different electrostatic situations to give myself a basis for my question.
Point charge:
\phi =\frac{1}{4\pi\epsilon_0} \frac{q}{r}
\nabla^2\phi=\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial \phi}{\partial r}\right)=\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\left(-\frac{1}{4\pi\epsilon_0} \frac{q}{r^2}\right)\right)=\frac{1}{r^2}\frac{\partial}{\partial r}\frac{q}{4\pi\epsilon_0}=0
Line of uniform charge density:
\phi=\frac{1}{2\pi\epsilon_0}\lambda \ln r
\nabla^2\phi=\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial \phi}{\partial r}\right)=\frac{1}{r}\frac{\partial}{\partial r}\left(r\left(\frac{1}{2\pi\epsilon_0}\lambda\frac{1}{r}\right)\right)=\frac{1}{r}\frac{\partial}{\partial r}\left(\frac{1}{2\pi\epsilon_0}\lambda\right)=0
Plane of uniform charge density:
\phi=\frac{z\sigma}{2\epsilon_0}
\nabla^2\phi=\frac{\partial^2\phi}{\partial z^2}=0
My question then arises: Is the laplacian of the scalar potential always zero?
If no, please show a counterexample.
Thanks.
First I will do some calculations of the laplacian of the scalar potential in different electrostatic situations to give myself a basis for my question.
Point charge:
\phi =\frac{1}{4\pi\epsilon_0} \frac{q}{r}
\nabla^2\phi=\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial \phi}{\partial r}\right)=\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\left(-\frac{1}{4\pi\epsilon_0} \frac{q}{r^2}\right)\right)=\frac{1}{r^2}\frac{\partial}{\partial r}\frac{q}{4\pi\epsilon_0}=0
Line of uniform charge density:
\phi=\frac{1}{2\pi\epsilon_0}\lambda \ln r
\nabla^2\phi=\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial \phi}{\partial r}\right)=\frac{1}{r}\frac{\partial}{\partial r}\left(r\left(\frac{1}{2\pi\epsilon_0}\lambda\frac{1}{r}\right)\right)=\frac{1}{r}\frac{\partial}{\partial r}\left(\frac{1}{2\pi\epsilon_0}\lambda\right)=0
Plane of uniform charge density:
\phi=\frac{z\sigma}{2\epsilon_0}
\nabla^2\phi=\frac{\partial^2\phi}{\partial z^2}=0
My question then arises: Is the laplacian of the scalar potential always zero?
If no, please show a counterexample.
Thanks.