Lattices in nilpotent Lie groups

  • Thread starter Thread starter ibond
  • Start date Start date
  • Tags Tags
    Groups Lie groups
ibond
Messages
1
Reaction score
0
Please, help me with the following questions or recommend some good books.

1) We have a simply-connected nilpotent Lie group G and a lattice H in G. Let L be a Lie algebra of G. There is a one to one correspondence between L and G via exp and log maps.
a) Is it true, that to an ideal in L corresponds a normal subgroup in G?
b) If we have a normal subgroup P in G, can we find a normal subgroup in H with Lie group P?

2) What is the construction of Riemann metric on the Lie group G corresponding to its lattice H?
 
Physics news on Phys.org
1 a) is clearly true
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...

Similar threads

Back
Top