Learning Craig Bampton Method: Reference Books & Resources

  • Thread starter Thread starter millachin
  • Start date Start date
  • Tags Tags
    Method
AI Thread Summary
The discussion focuses on finding reference books and online resources for learning the Craig-Bampton (CB) method, which is used for modeling large structures composed of subcomponents. The CB method emphasizes retaining all degrees of freedom at the boundaries to accurately capture the internal dynamics of each subcomponent, which can be modeled separately. It allows for independent verification of subcomponent models against test measurements, facilitating easier problem identification. Variations of the method exist, such as using free boundary conditions, which may enhance model accuracy. Key resources shared include a NASA summary on the math behind the method and a tutorial on practical dynamics modeling issues.
millachin
Messages
6
Reaction score
0
Can anyone suggest a good reference book for learning Craig Bampton method? Also it will be of great help if you could give links on the internet which explain the CB method in a detailed manner and websites/webpages that have a good set of numericals based on the CB method.

Thanks in advance!
 
Engineering news on Phys.org
The motivation for CB is that most "big" stuctures are physically bult from subcomponents with which can be modeled separately. To make a reduced dynamics model of each subcomponent, you need to retain all the degrees of freedom at the boundaries which wll join to the other subcomponents. But if you eliminate everything else from the model, you lose the dynamic behaviour happening "inside" each subcomponent.

The basic idea of CB is to represent the internal dynamics of each subcomponent by its vibration modes with its boundaries fixed. This works well when the physical connections between the subcomponents are simple compared with the dynamics of each subcomponent, for example a satellite attached to its launch rocket at a small number of mounting points.

Another benefit is that each subcomponent model can often be checked against test vibration measurements indepedendently, which makes it easier to find and fix problems than working with just one large model. In fact the component models can be constructed directly from measured data, instead of making a conventional FE model.

There are variations on the basic idea - for example it is possible to the vibration modes of subcoomponents with the boundaries free to move instead of fixed (or with some parts of the boindary fixed and the rest free), which may improve the accuracy for a given size of model. Devising the "best" way (and even defining what "best" means) is an ongoing research topic.

This looks a pretty good summary of the math (it's slightly NASTRAN-flavored, but most of it should make sense if you don't know NASTRAN): http://femci.gsfc.nasa.gov/craig_bampton/index.html

THe guutar analysis example here is fairly typical of the practical issues with this type of dynamics modelling: http://www.sem.org/pdf/substructuring_tutorial_imac2010.pdf
 
Last edited by a moderator:
Thanks AlephZero. Sorry for the late response. I was on a vacation, so, couldn't access the net.

To make a reduced dynamics model of each subcomponent, you need to retain all the degrees of freedom at the boundaries which wll join to the other subcomponents. But if you eliminate everything else from the model, you lose the dynamic behaviour happening "inside" each subcomponent.

What procedure is applied to study the DOFs? We have the analysis set which is split into boundary DOFs and interior DOFs. The boundary DOFs are reduced by Static condensation and we use the eigenvalue analysis in solving the interior DOFs (if I am not wrong). We generate two sub-matrices B = [I ϕR] and ϕ = [0 ϕL] (where R represents the boundary DOF and L represents interior DOF). The two sub-matrices are combined to generate a global transformation matrix.
B is called boundary node functions and ϕ is called fixed base shape nodes. The essence of CB method is to understand these two. Could you please elaborately explain them?
 
@AlephZero
CB method can be divided into two parts - Static and Dynamic.
In static part, we essentially solve for the boundary DOF and express the elastic DOF in terms of boundary DOF. My question is - why do we give unit displacement to the interface DOF while solving for the displacements and keep the other contraint/interface DOF zero?
 
How did you find PF?: Via Google search Hi, I have a vessel I 3D printed to investigate single bubble rise. The vessel has a 4 mm gap separated by acrylic panels. This is essentially my viewing chamber where I can record the bubble motion. The vessel is open to atmosphere. The bubble generation mechanism is composed of a syringe pump and glass capillary tube (Internal Diameter of 0.45 mm). I connect a 1/4” air line hose from the syringe to the capillary The bubble is formed at the tip...
Thread 'Physics of Stretch: What pressure does a band apply on a cylinder?'
Scenario 1 (figure 1) A continuous loop of elastic material is stretched around two metal bars. The top bar is attached to a load cell that reads force. The lower bar can be moved downwards to stretch the elastic material. The lower bar is moved downwards until the two bars are 1190mm apart, stretching the elastic material. The bars are 5mm thick, so the total internal loop length is 1200mm (1190mm + 5mm + 5mm). At this level of stretch, the load cell reads 45N tensile force. Key numbers...
I'd like to create a thread with links to 3-D Printer resources, including printers and software package suggestions. My motivations are selfish, as I have a 3-D printed project that I'm working on, and I'd like to buy a simple printer and use low cost software to make the first prototype. There are some previous threads about 3-D printing like this: https://www.physicsforums.com/threads/are-3d-printers-easy-to-use-yet.917489/ but none that address the overall topic (unless I've missed...
Back
Top