What makes Lie Groups a crucial theory in modern dynamics and beyond?

AI Thread Summary
Lie Groups provide a rigorous foundation for modern dynamics and are essential in various fields such as physics, engineering, chemistry, and biology. The lecture notes by Vladimir G. Ivancevic and Tijana T. Ivancevic are tailored for a third-year or graduate-level course, requiring only knowledge of calculus and linear algebra. This theory is pivotal for understanding field and gauge theories, which are fundamental in contemporary scientific applications. The notes span 58 pages and include four figures to aid comprehension. Overall, Lie Groups are recognized as a crucial theoretical framework in modern dynamics and beyond.
marcus
Science Advisor
Homework Helper
Gold Member
Dearly Missed
Messages
24,753
Reaction score
795
http://arxiv.org/abs/1104.1106
Lecture Notes in Lie Groups
Vladimir G. Ivancevic, Tijana T. Ivancevic
(Submitted on 6 Apr 2011)
These lecture notes in Lie Groups are designed for a 1--semester third year or graduate course in mathematics, physics, engineering, chemistry or biology. This landmark theory of the 20th Century mathematics and physics gives a rigorous foundation to modern dynamics, as well as field and gauge theories in physics, engineering and biomechanics. The only necessary background for comprehensive reading of these notes are calculus and linear algebra.
Comments: 58 pages, 4 figures
 
  • Like
Likes beniamino
Mathematics news on Phys.org
Thanks for posting this link.
 
:smile:Thanks !
 
These guys are pretty good. They've also got some nice notes on TQFT and De Rham–Hodge Theory that are well worth checking out.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top