Legendre symbol proof for (-5/p)

abertram28
Messages
54
Reaction score
0
I am working on some homework that I already handed in, but I can't get one of the problems. The fourth problem on the HW was to prove the forms of (-1/p), (2/p), (3/p), (-5/p), and (7/p).

I did this for -1 and 2 using the quadratic residues and generalizing a form for them. for 3 and 7 i used QRL, since they are both -1 mod 4, can i use QRL for the proof of -5 too? i know i got at least 80% on this problem, and that's a B+, so i should be fine on this problem. could someone please guide me on the first steps of this proof so that i can understand it? 3 and 7 were pretty easy, but I am not sure i got 7 right. most of it was in the book by David Burton that we use. BTW, I am a sophomore in math, so this class is really hard for me. that's why I am coming here for more understanding, that and my profs office hours are short and i use them for linear algebra.

for 3, i showed p congruent to 1 mod 4 for 4|p-1 and congruent to 1 mod 3 for 3|p-1, so 12|p-1, the forms of this p congruent to 3 mod 4 are 3 mod 12, 7 mod 12, 11 mod 12, and p congruent to 2 mod 3, if p congruent to 2 mod 12, 5 mod 12, 8 mod 12, 11 mod 12. the common solutions are p congruent to 1 and 11 mod 12, so its +- 1 mod 12, (3/p)=1, and since 8 is 0 mod 4, toss it, 3 and 9 are 0 mod 3, toss em, so 5,7 yield +- 5 mod 12, (3/p)=-1

can someone lead me through this for -5 now?

sorry for type settting, it wasnt really that necessary for this problem, and I am in a lab where i don't have much time left. sorry for long paragraphs too!
 
Physics news on Phys.org
First break it into cases depending on what (-1/p) is, which you should know everything about. Then use quadratic reciprocity to determine (5/p), according to what p is mod 5.
 
ok, i see. I am needing to break (-5/p) into (5/p)(p/5)(-1/p) and solve for all the common congruences?

i get (-5/p) = {1 for p congruent to 1,9 (mod 20) and -1 for p congruent to -1,-9 (mod 20)}

is that right?

*EDIT* oops, don't i need to hit 3,7,13,17? *works on second half* *EDIT*

*2nd EDIT*

so, for p congruent to 3 (mod 20), both (-1/p) and (5/p) are -1, so 3 goes in the 1s, p congruent to 7 (mod 20), both (-1/p) and (5/p) are -1, so 7 goes in the 1s too, p congruent to 13, (-1/p) is 1, so its a -1s, same with 17...

so its (-5/p)={1 if p congruent to 1,3,7,9 (mod 20), -1 if p congruent to -1,-3,-7,-9 (mod 20)}

*2nd EDIT*
 
Last edited:
what would the proof be if it was to be (-3/p)? i know it is suppose to end up as =1 if p == 1 mod 6, and -1 if p == -1 mod 6, but why?
 
Last edited:
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top