- #1
Muh. Fauzi M.
- 17
- 1
Homework Statement
Proof the leptonic-hadronic tensor multiplication, with ##p^\mu=(M,\textbf{0})## and ##p'^\mu=(E',\textbf{p}')## is rest target and final target momentum respectively, and ##k^\mu=(\omega,\textbf{k})##, ##k'\mu=(\omega'
,\textbf{k}')## is momenta of incoming and outgoing electron, hence we get
$$L_{\mu\nu}T^{\mu\nu}=8\Big(2(k\cdot p)(k'\cdot p)+\frac{q^2}{2M^2}\Big)$$
Homework Equations
The hadronic tensor,
$$T^{\mu\nu}=(p+p')^\mu(p+p')^\nu$$
The leptonic tensor,
$$L_{\mu\nu}=2\Big(k'_\mu k\nu+k'_\nu k_\mu + \frac{1}{2}q^2g_{\mu\nu}\Big)$$.
The Attempt at a Solution
I try something like this
$$ L_{\mu\nu}T^{\mu\nu} = 2\Big(k'_\mu k_\nu+k'_\nu k_\mu + \frac{1}{2}q^2g_{\mu\nu}\Big) (p+p')^\mu(p+p')^\nu $$
Expanding the second term in the rhs
$$ L_{\mu\nu}T^{\mu\nu} = 2\Big(k'_\mu k_\nu+k'_\nu k_\mu + \frac{1}{2}q^2g_{\mu\nu}\Big) (p^\mu p^\nu + p^\mu p'^\nu + p'^\mu p^\nu + p'^\mu p'^\nu) $$
hence,
$$ L_{\mu\nu}T^{\mu\nu} = 2 \Big[ (k' \cdot p)(k \cdot p) + 2 (k'\cdot p)(k \cdot p') + (k' \cdot p')(k \cdot p') + (k' \cdot p)(k \cdot p) + 2 (k'\cdot p')(k \cdot p) + (k' \cdot p')(k \cdot p') + \frac{1}{2}q^2 (p^\mu p^\nu + p^\mu p'^\nu + p'^\mu p^\nu + p'^\mu p'^\nu) \Big] $$