The Schwarzschild radius R_s of an (4+n)-dimensional black hole:
R_s = \frac{1}{\sqrt{\pi} M_p} \left[ \frac{M_{BH}}{M_p} \left( \frac{8 \Gamma\left(\frac{n+3}{2} \right)}{n+2} \right) \right] ^{\frac{1}{n+1}}
At the minimum dimensional boundary (n = 0, M_bh = M_p), this equation should reduce to the Schwarzschild radius.
The Schwarzschild radius R_s of an 4-dimensional black hole:
\boxed{R_s = \frac{4 \hbar c \Gamma \left( \frac{3}{2} \right)}{ \sqrt{\pi} E_p} = \frac{2 G M_p}{c^2} \; \; \; n = 0 \; \; \; M_{BH} = M_p}
\boxed{\Gamma \left( \frac{3}{2} \right) = \frac{\sqrt{\pi}}{2}}
The Schwarzschild radius R_s of an (4+n)-dimensional black hole in International System units:
\boxed{R_s = \sqrt{\frac{\hbar G}{\pi c^3}} \left[ \frac{E_{BH}}{E_p} \left( \frac{8 \Gamma\left(\frac{n+3}{2} \right)}{n+2} \right) \right] ^{\frac{1}{n+1}}}
\boxed{R_s = \frac{r_p}{\sqrt{\pi}} \left[ \frac{E_{BH}}{E_p} \left( \frac{8 \Gamma\left(\frac{n+3}{2} \right)}{n+2} \right) \right] ^{\frac{1}{n+1}}}
Given that the maximum LHC energy is E_bh = 14 Tev and the arbitrary maximum extra dimension number n = 10, the plot of Schwarzschild radius versus dimension number is displayed as attachment.
[/Color]
Reference:
http://www.youtube.com/watch?v=M3iMX8xzofc&NR=1"
http://arxiv.org/PS_cache/hep-ph/pdf/0106/0106295v1.pdf"
http://en.wikipedia.org/wiki/Micro_black_hole"
https://www.physicsforums.com/showpost.php?p=1844504&postcount=48"
http://en.wikipedia.org/wiki/Hawking_Radiation"
http://www.wissensnavigator.ch/documents/OTTOROESSLERMINIBLACKHOLE.pdf"
http://en.wikipedia.org/wiki/Otto_R%C3%B6ssler"
http://www.youtube.com/watch?v=Kf3T4ZHnuvc"
http://www.youtube.com/watch?v=PR2OLjAr1Fc"
Nostradamus 9 44 said:
Leave, leave Geneva every last one of you,
Saturn will be converted from gold to iron,
RAYPOZ will exterminate all who oppose him,
Before the coming the sky will show signs.