mma
- 262
- 5
Lie derivative of a vector field Y along a vector field X is a third vector field acting on a funcion f as
\mathcal{L}_X Y(f)(p) = X(Y(f))(p) - Y(X(f)(p) = \lim_{t,s \to 0} \frac{f(\psi_s \circ \phi_t (p)) - f(\phi_t \circ \psi_s (p))}{st}
where \phi and \psi are the flows generated by X and Y respectively.
On the other hand, using an alternative definitiion of the Lie derivative
(\mathcal{L}_X Y)_p=\left.\frac{d}{dt}\right|_{t=0}\left((\phi_t^{-1})_*Y_{\phi_{t}(p)}\right)
we get
\mathcal{L}_X Y(f)(p) = \lim_{t,s \to 0} \frac{f( \phi_t^{-1} \circ \psi_s \circ \phi_t (p)) - f(\psi_s (p))}{st}
Are these equal?
\mathcal{L}_X Y(f)(p) = X(Y(f))(p) - Y(X(f)(p) = \lim_{t,s \to 0} \frac{f(\psi_s \circ \phi_t (p)) - f(\phi_t \circ \psi_s (p))}{st}
where \phi and \psi are the flows generated by X and Y respectively.
On the other hand, using an alternative definitiion of the Lie derivative
(\mathcal{L}_X Y)_p=\left.\frac{d}{dt}\right|_{t=0}\left((\phi_t^{-1})_*Y_{\phi_{t}(p)}\right)
we get
\mathcal{L}_X Y(f)(p) = \lim_{t,s \to 0} \frac{f( \phi_t^{-1} \circ \psi_s \circ \phi_t (p)) - f(\psi_s (p))}{st}
Are these equal?