Light that is directed towards the center of a black hole

AI Thread Summary
A beam of light can theoretically orbit a black hole at a specific radius known as the photon sphere, but this orbit is unstable and temporary. As light approaches the event horizon, gravitational effects intensify, making it impossible for light to maintain a stable orbit indefinitely. Once light crosses the event horizon, it cannot escape, regardless of any deflection attempts. The photon sphere is located at a radius of 1.5 times the Schwarzschild radius for non-rotating black holes, while rotating black holes have different radii for orbits. Ultimately, due to diffraction and tidal forces, light will either escape or be pulled into the black hole over time.
jaydnul
Messages
558
Reaction score
15
If a beam of light is on a trajectory that is perfectly tangent to the event horizon of a black hole (or a little below tangent, allowing it to "dip" into the EH for a moment), is it possible that that photon could be pulled into a never ending orbit around the black hole? Or is the gravity too great that not even the biggest super massive black holes in the universe could achieve this?

Edit: the title is supposed to say light that ISN'T directed...
 
Astronomy news on Phys.org
In theory, yes. There is a region called the photosphere where a photon can orbit a black hole. This, however, is a temporary situation. The orbit is unstable and will not persist.
 
If you go nearer and nearer to the event horizon, the effect of gravity gets stronger and stronger unlimitedly. So, I think, you can always find balancing radius for a photon to orbit a black hole. But, light as wave diffuses by diffraction. So, it will not last long.
 
Jd0g33 said:
(or a little below tangent, allowing it to "dip" into the EH for a moment),
"dip" is impossible. Anything inside the EH can not go out of the EH. This is the definition of EH. Furthermore, I think, anything can not go into the EH in our (= observers far from the black hole) frame of reference because progress of the time stops there. Following link shows further discussion.
http://en.doppolaboratory.com/engli...tions/is-the-distance-to-a-black-hole-finite/
 
There are possible orbits for light, but they are not at the event horizon. For non-rotating black holes, their radius is 1.5 times the Schwarzschild radius.
If light comes closer than this value, and does not get deflected (with a mirror for example), it will fall into the black hole. Once light crossed the event horizon, not even a deflection helps.

A rotating black hole has different radiuses corresponding to different directions of the orbit.
 
mfb said:
Once light crossed the event horizon,
“Kruskal–Szekeres coordinates“ shows that light can cross the event horizon. But, I think, the crossing can take place after the end of our spacetime. I calculated the time for light to reach the surface of a black hole from a certain point by simply integrating well-known equation. It went infinite. This is shown in eq. (7) in the web page cited in comment #4 above.
 
Just fall in together with the light, and it will be finite for you ;).
As there is no unique way to synchronize clocks in general relativity (and even if you could do this, they would run out of sync again), it is not so clear what "happens after time x" means.
 
All I wanted to say is that eq. (7) seems simple enough to convince me.
 
Sorao said:
But, light as wave diffuses by diffraction. So, it will not last long.
defracts off what?
 
  • #11
Superposed_Cat said:
defracts off what?

A laser pointer can spot a point sharply at a screen 10m ahead. But it can’t spot a point 100m ahead because the beam diverges and brightness of the spot decreases. This is because of diffraction. Additionally, because of strong tidal effect, the divergence must be accelerated. So, I think all photons will escape or fall into the black hole before long.
 
Last edited:

Similar threads

Replies
7
Views
3K
Replies
13
Views
3K
Replies
11
Views
4K
Replies
6
Views
2K
Back
Top