Likelihood Functions: Parameters & Probabilities

Cinitiator
Messages
66
Reaction score
0
As far as I know, the definition of likelihood functions is the probability of a given random variable result given some parameter (please correct me if I'm wrong). What kind of parameters are usually handled by likelihood functions? Population parameters? Statistical model parameters? Both?
 
Physics news on Phys.org
Cinitiator said:
As far as I know, the definition of likelihood functions is the probability of a given random variable result given some parameter (please correct me if I'm wrong).

For a continuous random variable x with probability density f(x), a number such as f(a) isn't "the probability that x = a". ( For example the desnity of a random variable x uniformly distributed on the interval [0, 1/2] is f(x) = 2 and 2 isn't a possible value for the probability of an event.) The density can be used to approximate the probability that x is in a small interval around a particular value and in many situations, you can think of the density at f(a) as "the probability that x = a" in order to remember the correct formulas. But f(a) isn't actually "the probability that x = a".

The fact that a value of the denstiy function isn't an actual probability explains why the phrase "maximum liklihood" is used instead of the simpler phrase "maximum probability".
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Back
Top