Lim x -> 0 of (1/(2+x) - 1/2)/x

  • Thread starter Thread starter IntegrateMe
  • Start date Start date
IntegrateMe
Messages
214
Reaction score
1
lim x tends to 0 of:

[1/(2+x) - 1/2] / x

I simplified the fraction and got:

[x / 2(2+x)] / x

and with further simplification:

x / x(4+2x)

How do I solve this without using L'Hopital's rule?
 
Physics news on Phys.org
The answer is 1, by the way.
 
You can use "partial fractions" to simplify.
[1/(2+x) - 1/2] / x <=> 1/x(2+x) - 1/2x <=> 1/2x-1/(2x+4)-1/2x <=> -1/(2x+4)

When x goes to 0, the solution is goes towards -1/4 = -1/(2*0+4)

The partial fraction of found by solving
1/x(2+x) = a/x + b/(x+2)
 
You can use "partial fractions" to simplify.
[1/(2+x) - 1/2] / x <=> 1/x(2+x) - 1/2x <=> 1/2x-1/(2x+4)-1/2x <=> -1/(2x+4)

When x goes to 0, the solution is goes towards -1/4 = -1/(2*0+4)

The partial fraction of found by solving
1/x(2+x) = a/x + b/(x+2)
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top