because ##\frac{x-\sin{x}}{(\sin{x})^3}\not=\frac{1}{\sin^{2}{x}}-\frac{1}{\sin^{2}{x}}##. I understand that you want to use the limit ##\lim_{x\rightarrow 0}\frac{\sin{x}}{x}=1##, but in this case you need a better approximation than ##\sin{x}\sim x## as ##x\rightarrow 0## ...
I'm reviewing Meirovitch's "Methods of Analytical Dynamics," and I don't understand the commutation of the derivative from r to dr:
$$
\mathbf{F} \cdot d\mathbf{r} = m \ddot{\mathbf{r}} \cdot d\mathbf{r} = m\mathbf{\dot{r}} \cdot d\mathbf{\dot{r}}
$$