Limit as x approaches 1 of integral of sin(t) over x squared minus 1

  • Thread starter Thread starter IntegrateMe
  • Start date Start date
  • Tags Tags
    Limit
IntegrateMe
Messages
214
Reaction score
1
\frac{\int_{1}^{x} sint dt}{x^2-1}
 
Physics news on Phys.org
Is it t or x inside integral and the denominator is below the "whole" integral?
 
any ideas? what can you say about the numerator & denominator as x tends to 1?
 
Last edited:
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top