Limit does not exist but function exist

  • Thread starter Thread starter funlord
  • Start date Start date
  • Tags Tags
    Function Limit
AI Thread Summary
The discussion revolves around understanding a specific case in limits where the limit of a function as x approaches a value does not exist, but the function itself is defined at that point. The user presents a piecewise function where, as x approaches -5 from the left, the limit approaches -2, while from the right, it approaches 0. This discrepancy indicates that the overall limit does not exist, as both sides do not converge to the same value. The conversation also touches on the importance of different representations of functions, suggesting that exploring alternative forms may clarify the concept. Ultimately, the case illustrates the nuances of limits in piecewise functions and their implications.
funlord
Messages
15
Reaction score
1

Homework Statement


there are four cases on limits given to us, and one of them I didnt really understand.
This case was: Limit f(x) as x approaches a does not exist but f(a) exist.

Homework Equations


upload_2015-6-20_8-32-29.png

The Attempt at a Solution


My answer here that the limit in this piecewise defined function exist,
As x approaches -5 from the left, it uses the function x+3;
And as x approaches -5 from the right, it uses the function √(25-x^2)please give me a great explanation with this case

Thank you
 
Physics news on Phys.org
funlord said:

Homework Statement


there are four cases on limits given to us, and one of them I didnt really understand.
This case was: Limit f(x) as x approaches a does not exist but f(a) exist.

Homework Equations


View attachment 85012

The Attempt at a Solution


My answer here that the limit in this piecewise defined function exist,
As x approaches -5 from the left, it uses the function x+3;
And as x approaches -5 from the right, it uses the function √(25-x^2)please give me a great explanation with this case

Thank you

Do you really think that 0 = -2? That would need to be true in order that f(x) have a limit as x → -5.
 
funlord said:
As x approaches -5 from the left, it uses the function x+3;
This suggests that the limit should be -2.

funlord said:
And as x approaches -5 from the right, it uses the function √(25-x^2)
This suggests that the limit should be 0.

A limit of f at 5 is a number L such that for all ##\varepsilon>0## there's a ##\delta>0## such that the following implication holds for all real numbers ##x##.
$$0<|x-5|<\delta\ \Rightarrow\ |f(x)-L|<\varepsilon.$$ The implication is saying that f maps the interval ##(5-\delta,5+\delta)## into the interval ##(L+\varepsilon,L-\varepsilon)##.

Now let's see if there a ##\delta>0## with the property above, in the special case when ##\varepsilon=1##. No matter how small we choose ##\delta##, there's an x in the interval ##(5-\delta,5+\delta)## such that f(x) is not in the interval (-2-1,-2+1)=(-3,-1). (Choose x slightly greater than 5, so that f(x) is very close to 0). This implies that -2 can't be a limit. And there's also a y in the interval ##(5-\delta,5+\delta)## such that f(y) is not in the interval (0-1,0+1)=(-1,1). (Choose y slightly less than 5, so that f(y) is very slose to -2). This implies that 0 can't be a limit.
 
Last edited:
funlord said:

Homework Statement


there are four cases on limits given to us, and one of them I didnt really understand.
This case was: Limit f(x) as x approaches a does not exist but f(a) exist.

Homework Equations


View attachment 85012

The Attempt at a Solution


My answer here that the limit in this piecewise defined function exist,
As x approaches -5 from the left, it uses the function x+3;
Yes, and so as x gets closer and closer to -5 (from the left), f(x) gets closer and closer to -5+ 3= -2.

And as x approaches -5 from the right, it uses the function √(25-x^2)
Yes, and so as x gets closer and closer to -5 (from the right), f(x) gets closer and closer to √(25-(-5)^2)= 0.
But we can't say that f(x) gets closer and closer to anyone number as x gets closer and closer to -5.

please give me a great explanation with this case

Thank you
 
thank you for the great explanation
 
There is a typo on that page the image is taken from:

upload_2015-6-23_12-0-36.png


It seems this should have said:

##\displaystyle\ \lim_{x\to -5}\, f(x) \ \text{ does not exist. [why?]} \ ##​

As it's stated in your image, the limit does exist. It's simply the same as the constant ƒ(-5) , which is zero .
 
funlord said:

Homework Statement


there are four cases on limits given to us, and one of them I didnt really understand.
This case was: Limit f(x) as x approaches a does not exist but f(a) exist.

Does the problem say "there exists an a such that..." or "for all a.."

Also, are you required to give an equation as the representation of a function? A function can be represented in 4 different ways: in words, as an equation, in a table, and as a graph. Perhaps reasoning with one of these other representations may be helpful.
 
Back
Top