arpon
- 234
- 16
Homework Statement
$$\lim _{x \rightarrow 1} (\frac{23}{1-x^{23}}-\frac{11}{1-x^{11}})$$
Homework Equations
i) For functions f and g which are differentiable on an open interval I except possibly at a point c contained in I, if
then
[PLAIN]https://upload.wikimedia.org/math/8/9/9/8991dfbd9db5990224ae803c727464a7.png.
ii) $$\lim _{x \rightarrow a} (f(x) \cdot g(x)) = \lim _{x \rightarrow a} f(x) \cdot \lim _{x \rightarrow a} g(x) $$
The Attempt at a Solution
$$\begin{align}
\lim _{x \rightarrow 1} (\frac{23}{1-x^{23}}-\frac{11}{1-x^{11}})&= \lim _{x \rightarrow 1} \frac{1}{1-x}(\frac{23(1-x)}{1-x^{23}}-\frac{11(1-x)}{1-x^{11}})\\
&= \lim _{x \rightarrow 1} \frac{1}{1-x} \cdot (\lim _{x \rightarrow 1} \frac{23(1-x)}{1-x^{23}}-\lim _{x \rightarrow 1} \frac{11(1-x)}{1-x^{11}})\\
&= \lim _{x \rightarrow 1} \frac{1}{1-x} \cdot (\lim _{x \rightarrow 1} \frac{1}{x^{22}}-\lim _{x \rightarrow 1} \frac{1}{x^{10}}) \text {[Using L Hopital's Rule]} \\
&= \lim _{x \rightarrow 1} \frac{1-x^{12}}{1-x} \lim _{x \rightarrow 1} x^{22} \\
&= \lim _{x \rightarrow 1} 12x^{11} \lim _{x \rightarrow 1} x^{22} \text {[Using L Hopital's Rule]}\\
&= 12
\end{align}$$
But the correct answer is 6
Last edited by a moderator: