Limit of a Difference of Rational Functions

  • Thread starter Thread starter arpon
  • Start date Start date
  • Tags Tags
    Limit
arpon
Messages
234
Reaction score
16

Homework Statement


$$\lim _{x \rightarrow 1} (\frac{23}{1-x^{23}}-\frac{11}{1-x^{11}})$$

Homework Equations


i) For functions f and g which are differentiable on an open interval I except possibly at a point c contained in I, if
2831c94ace338a268ca7cee5a6c2dd68.png
, and
09d577aee808027079cf3191c0800309.png
exists, and
21cc02743caf32a7473a553a60deaeb8.png
for all x in I with xc,

then

[PLAIN]https://upload.wikimedia.org/math/8/9/9/8991dfbd9db5990224ae803c727464a7.png.

ii) $$\lim _{x \rightarrow a} (f(x) \cdot g(x)) = \lim _{x \rightarrow a} f(x) \cdot \lim _{x \rightarrow a} g(x) $$

The Attempt at a Solution


$$\begin{align}
\lim _{x \rightarrow 1} (\frac{23}{1-x^{23}}-\frac{11}{1-x^{11}})&= \lim _{x \rightarrow 1} \frac{1}{1-x}(\frac{23(1-x)}{1-x^{23}}-\frac{11(1-x)}{1-x^{11}})\\
&= \lim _{x \rightarrow 1} \frac{1}{1-x} \cdot (\lim _{x \rightarrow 1} \frac{23(1-x)}{1-x^{23}}-\lim _{x \rightarrow 1} \frac{11(1-x)}{1-x^{11}})\\
&= \lim _{x \rightarrow 1} \frac{1}{1-x} \cdot (\lim _{x \rightarrow 1} \frac{1}{x^{22}}-\lim _{x \rightarrow 1} \frac{1}{x^{10}}) \text {[Using L Hopital's Rule]} \\
&= \lim _{x \rightarrow 1} \frac{1-x^{12}}{1-x} \lim _{x \rightarrow 1} x^{22} \\
&= \lim _{x \rightarrow 1} 12x^{11} \lim _{x \rightarrow 1} x^{22} \text {[Using L Hopital's Rule]}\\
&= 12
\end{align}$$
But the correct answer is 6
 
Last edited by a moderator:
Physics news on Phys.org
Apparently somehow you are subtracting two infinities. I am used to letting Taylor series do the work for limits, but that doesn't fly here: $$\lim_{\epsilon\downarrow 0} {23\over 1-(1+\epsilon)^{23} } = \lim_{\epsilon\downarrow 0} {23\over 23\epsilon}$$ and there you go. Same with the other one. Conclusion: one more Taylor term needed and then you'll get the ##{1\over2}## to produce the book result.
 
arpon said:

Homework Statement


$$\lim _{x \rightarrow 1} (\frac{23}{1-x^{23}}-\frac{11}{1-x^{11}})$$

Homework Equations


i) For functions f and g which are differentiable on an open interval I except possibly at a point c contained in I, if
2831c94ace338a268ca7cee5a6c2dd68.png
, and
09d577aee808027079cf3191c0800309.png
exists, and
21cc02743caf32a7473a553a60deaeb8.png
for all x in I with xc,

then

[PLAIN]https://upload.wikimedia.org/math/8/9/9/8991dfbd9db5990224ae803c727464a7.png.

ii) $$\lim _{x \rightarrow a} (f(x) \cdot g(x)) = \lim _{x \rightarrow a} f(x) \cdot \lim _{x \rightarrow a} g(x) $$

The Attempt at a Solution


$$\begin{align}
\lim _{x \rightarrow 1} (\frac{23}{1-x^{23}}-\frac{11}{1-x^{11}})&= \lim _{x \rightarrow 1} \frac{1}{1-x}(\frac{23(1-x)}{1-x^{23}}-\frac{11(1-x)}{1-x^{11}})\\
&= \lim _{x \rightarrow 1} \frac{1}{1-x} \cdot (\lim _{x \rightarrow 1} \frac{23(1-x)}{1-x^{23}}-\lim _{x \rightarrow 1} \frac{11(1-x)}{1-x^{11}})\\
&= \lim _{x \rightarrow 1} \frac{1}{1-x} \cdot (\lim _{x \rightarrow 1} \frac{1}{x^{22}}-\lim _{x \rightarrow 1} \frac{1}{x^{10}}) \text {[Using L Hopital's Rule]} \\
&= \lim _{x \rightarrow 1} \frac{1-x^{12}}{1-x} \lim _{x \rightarrow 1} x^{22} \\
&= \lim _{x \rightarrow 1} 12x^{11} \lim _{x \rightarrow 1} x^{22} \text {[Using L Hopital's Rule]}\\
&= 12
\end{align}$$
But the correct answer is 6

You cannot write
\lim_{x \to 1} \frac{1}{1-x} \cdot \left( \frac{23(1-x)}{1-x^{23}} - \frac{11(1-x)}{1-x^{11}} \right)
as
\lim_{x \to 1} \frac{1}{1-x} \cdot \left( \lim_{x \to 1} \frac{23(1-x)}{1-x^{23}} - \lim_{x \to 1} \frac{11(1-x)}{1-x^{11}} \right)
because the first factor ##= \pm \infty##. Instead, take ##x = 1 + h## and expand out ##x^n = (1+h)^n## in powers of ##h##.
 
Last edited by a moderator:
  • Like
Likes arpon
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top