Limit of x^1/x as x Approaches Infinity: Simplified Using ln and e

  • Thread starter Thread starter golriz
  • Start date Start date
  • Tags Tags
    Limit
golriz
Messages
43
Reaction score
0
Hello
please help me and compute this limit:
llim x^1/x when x approaches infinite.
I think we can rewrite this so: e^ln (x^1/x).
 
Physics news on Phys.org
ok so it simplifies to e^((lnx)/x) and the limit of (lnx)/x is 0, so? e^0 = 1
 
thanks
 
thanks
it was very easy!:smile:
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top