- #1

- 31

- 0

## Homework Statement

[tex] \lim_{x \to 0}[\frac{\sin(\tan(x))-\tan(\sin(x))}{x^7}][/tex]

## Homework Equations

[tex]\sin(x)=x-\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!} + ...[/tex]

[tex]\tan(x)=x+\frac{x^3}{3}+\frac{2x^5}{15}+\frac{17x^7}{215}+ ...[/tex]

## The Attempt at a Solution

I have an idea of how to do this by replacing sin(tan(x)) with tan(x) - tan(x)^3/3! + tan(x)^5/5!, etc., and then replacing the tans and sines with their respective taylor series. But I'm supposed to be able to do this without a calculator and presumably without expanding polynomials to the seventh power, which seems a bit ridiculous.

Can someone point me in the right direction?