One of the usual ways to get around l'Hopital is to use series representations (which I personally think is cheating.) But this one's a monster to do this way.
[math]2^x \approx 1 + (x ~ ln(2) ) + \dfrac{1}{2} (x ~ ln(2) )^2 + \dfrac{1}{6} (x ~ ln(2) )^3 + \text{ ...}[/math]
[math]2^{sin(x)} \approx 1 + (x ~ ln(2) ) + \dfrac{1}{2} (x ~ ln(2) )^2 + \dfrac{1}{6} x^3 ( (ln(2)^3 - ln(2) ) + \text{ ...}[/math]
[math]cos(x) \approx 1 - \dfrac{1}{2} x^2 + \text{ ...}[/math]
(These are MacLaurin series.)
So
[math]\dfrac{ 2^x - 2^{sin(x)} }{x (1 - cos(x) ) } \approx \dfrac{ \dfrac{1}{6} x^3 ln(2) }{x \left ( 1 - \left ( 1 - \dfrac{1}{2} x^2 \right ) \right ) } = \dfrac{1}{3} ln(2)[/math]
Ugly, but doable. (And yes, I did the [math]2^{sin(x)}[/math] series myself. I only checked it with W|A.)
-Dan