Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Limits and sine

  1. Nov 5, 2007 #1
    I am doing a question that goes like this Lim of sqrt(x) * sine(1/sqrt(x)) as x --> infinity = ? what i determined was as x --> infinity 1/sqrt(x) would approach zero there for sine of 1/sqrt(x) would approach 1 there fore 1 * sqrt(infinity) would be infinity. however the answer says it is 1. can sum1 explain this?
     
  2. jcsd
  3. Nov 5, 2007 #2
    What is sin(0)?
     
  4. Nov 5, 2007 #3

    HallsofIvy

    User Avatar
    Staff Emeritus
    Science Advisor

    That wouldn't explain why the limit is 1 rather than 0!

    Starcrafty, you've probably already proved that sin(x)/x goes to 1 as x goes to 0. What happens if you let u= 1/[itex]\sqrt{x}[/itex]?
     
  5. Nov 5, 2007 #4
    I never claimed it would, but reading the original post the OP seems to have the idea that sin(0)=1.
     
  6. Nov 6, 2007 #5

    HallsofIvy

    User Avatar
    Staff Emeritus
    Science Advisor

    Sorry, I see your point now!
     
  7. Nov 6, 2007 #6
    Yes, what you actually have is an indeterminate form. As they said above, as x -> infinity, 1/sqrt(x) goes to 0. The sin(0) is not 1, but zero. Therefore you should try applying L'Hoppital's rule (theorem?).
     
  8. Nov 6, 2007 #7
    L'Hopital's is not required here. A simple rearrangement of terms and proper use of limits will do.
     
    Last edited: Nov 6, 2007
  9. Nov 6, 2007 #8
    Please show, at least how to set it up, because I am not seeing the rearrangement of the terms.
     
  10. Nov 7, 2007 #9

    HallsofIvy

    User Avatar
    Staff Emeritus
    Science Advisor

    Then go back and read my first response!
     
  11. Nov 7, 2007 #10
    I agree that L'Hopital's rule is always easiest for limits that can support it. It is my main tool for all limits (excluding multivariable ones and limits that require other forms of solving and proof).
     
  12. Nov 7, 2007 #11
    I'm sorry I'm being a pain, but what are you meaning "u" to be. Are you replacing 1/x with 1/[itex]\sqrt{x}[/itex]?
     
  13. Nov 7, 2007 #12
    He is meaning u to be 1/[itex]\sqrt{x}[/itex], what happens if you make this substitution? What does the limit become in terms of u?
     
  14. Nov 8, 2007 #13
    Hmmm, that's an interesting way to compute the limit. I've never seen it done with u-substitution before.
     
  15. Nov 8, 2007 #14
    You would have, if you had checked your PM Inbox. :wink:
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?



Similar Discussions: Limits and sine
  1. Limit of (Replies: 13)

  2. Limit of this (Replies: 21)

  3. No limit (Replies: 3)

  4. Limit ? (Replies: 2)

Loading...