Limits involving the constant 'e'.

  • Thread starter Thread starter Morphayne
  • Start date Start date
  • Tags Tags
    Constant Limits
Morphayne
Messages
13
Reaction score
0
Hi. I'm confused about calculating the limit of a function involving Euler's number. I need to know the proper way to find the limit so I can determine the equation of the horizontal asymptote of the function. I do know, in my head what the graph looks like so I know that there is a horizontal asymptote is y=0. I just have to show my work, that's where I'm stuck.

Here is the problem:

lim(x->infinity)(2e^x)

My attempt:

lim(x->infinity)(2e^x) = lim(x->infinity)(2/e^-x)

=lim(x->infinity)(2/e^-infinity)

=lim(x->infinity)(2/0)

=0 Therefore: y=0

I'm not sure if I'm doing the problem the right way. If I did somehow get it right, can someone please give me a brief description on the proper method?

Thanks In Advance.
 
Physics news on Phys.org
Isn't the lim(2*e^x) = infinity? As x approaches infinity, so does e^x. You don't even really need those last couple steps, because lim(2e^x) = 2e^(infinity) = infinity.
 
Morphayne,

2/0 doesn't equal 0, it's "equal" to infinity, but in reality it's undefined.

Your original limit is equal to infinity for the reason that steelphantom mentioned.
 
Well, the answer in the textbook is says that there is a horizontal asymptote at y=0 which means that this limit somehow equals zero...

Help please!
 
As has been said previously,

\lim_{x\to\infty}2e^{x} = \infty

However,

\lim_{x\to-\infty}2e^{x} = 0

Hence the horizontal asymptote.
 
Last edited:
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top