Limits probably involving e^x-1/x special limit

  • Thread starter Thread starter alingy1
  • Start date Start date
  • Tags Tags
    Limit Limits
alingy1
Messages
325
Reaction score
0

Homework Statement


lim of (a^x-a^-x-2)/(x^2) as x->0

Find the value of the limit^.


The answer is (lna)^2
I know how to get the answer using L'Hospital.
However, I do not want to use Hospital's rule.
I think I see the pattern with the special limit:
lim of (e^x-1)/x as x->0

But I just don't see how I can apply that. I tried to take ln() out of everything, but it leads me to nowhere.
Please help me.
 
Physics news on Phys.org
alingy1 said:

Homework Statement


lim of (a^x-a^-x-2)/(x^2) as x->0

Find the value of the limit^.


The answer is (lna)^2
I know how to get the answer using L'Hospital.
However, I do not want to use Hospital's rule.
I think I see the pattern with the special limit:
lim of (e^x-1)/x as x->0

But I just don't see how I can apply that. I tried to take ln() out of everything, but it leads me to nowhere.
Please help me.

a^x=e^(ln(a)x) is the connection between powers of e and a. You could also substitute the series expansions of the function. But I don't think knowing the special limit you've got there will help.
 
Then, how else could we solve this problem?
My school hasn't taught me Hospital's rule. So, there must be another way.
 
As far as I can see, L'Hopital's rule doesn't even apply since the numerator does not equal 0 if you plug in 0. a^0 - a^(-0) - 2 = 1 - 1 - 2 = -2.

You're simply dividing by a small positive number, so the limit is negative infinity.
 
I think there's a typo in the original post. The problem should be
$$\lim_{x \to 0} \frac{a^x + a^{-x} - 2}{x^2}.$$ You can rewrite this as
$$\lim_{x \to 0} \frac{a^{-x}[(a^x)^2 - 2a^x +1]}{x^2}.$$ You can do a little algebra, use what Dick said about expressing this in terms of ##e##, and change variables appropriately to relate it back to the special limit.
 
vela said:
I think there's a typo in the original post. The problem should be
$$\lim_{x \to 0} \frac{a^x + a^{-x} - 2}{x^2}.$$ You can rewrite this as
$$\lim_{x \to 0} \frac{a^{-x}[(a^x)^2 - 2a^x +1]}{x^2}.$$ You can do a little algebra, use what Dick said about expressing this in terms of ##e##, and change variables appropriately to relate it back to the special limit.

Ok, that's nice. Now I see how to use the 'special limit'.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top