MHB What is the basis for $F$ in linear algebra?

Dethrone
Messages
716
Reaction score
0
Let $F$ be the set of infinite sequences $(a_1,a_2,a_3...)$, where $a_i \in \Bbb{R}$ that satisfy
$a_{i+3}=a_i+a_{i+1}+a_{i+2}$
This describes a finite-dimensional vector space. Determine a basis for $F$.
 
Mathematics news on Phys.org
It is easy to see that any sequence $(a_i)$ is uniquely determined by its first three elements, so this vector space has dimension 3. A suitable basis is the set of the three sequences $x, y, z$ defined by:
$$x = (1, 0, 0, 1, 1, 2, 4, \cdots)$$
$$y = (0, 1, 0, 1, 2, 3, 6, \cdots)$$
$$z = (0, 0, 1, 1, 2, 4, 7, \cdots)$$
i.e. $x$, $y$ and $z$ are the sequences defined by the first three elements $(1, 0, 0)$, $(0, 1, 0)$ and $(0, 0, 1)$ respectively. It's easy to see that the basis $\{ x, y, z \}$ is linearly independent, for suppose there exists $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$ such that:
$$\lambda_1 x + \lambda_2 y + \lambda_3 z = 0$$
Where $0$ is of course the zero sequence. But that would imply:
$$\lambda_1 (1, 0, 0, \cdots) + \lambda_2 (0, 1, 0, \cdots) + \lambda_3 (0, 0, 1, \cdots) = (0, 0, 0, \cdots)$$
That is:
$$(\lambda_1, 0, 0, \cdots) + (0, \lambda_2, 0, \cdots) + (0, 0, \lambda_3, \cdots) = (0, 0, 0, \cdots)$$
In other words, $\lambda_1 = \lambda_2 = \lambda_3 = 0$ and so this set is linearly independent. Finally, it's easy to see that this set spans the entire vector space, since every sequence $(a_i)$ with first three elements $a_1, a_2, a_3$ can be written as:
$$a_1 x + a_2 y + a_3 z$$
Which is in the vector space and has its first three elements equal to $a_1, a_2, a_3$ and so must be equal to $(a_i)$. Therefore $\{ x, y, z \}$ is a basis of this vector space.
 
Last edited:
I hope you'll forgive me that I'm using isomorphisms of vector spaces. (Blush)

Let $f$ be the function $F \to \mathbb R^3$ given by $(a_1,a_2,a_3, ...) \mapsto (a_1,a_2,a_3)$.
Since all elements following $a_3$ are uniquely determined by $a_1,a_2,a_3$, $f$ is a bijection.
Moreover, since $F$ is a vector space, it follows that for all $x,y \in F, \lambda \in \mathbb R$ we have: $f(x+y)=f(x)+f(y)$ and $f(\lambda x) = \lambda f(x)$.
Thus $f$ is an isomorphism of vector spaces.

Since {(1,0,0), (0,1,0), (0,0,1)} is a basis for $\mathbb R^3$, it follows that {(1,0,0,...), (0,1,0,...), (0,0,1,...)} is a basis for $F$. (Nerd)
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top