mick25
- 13
- 0
[Linear Algebra] Finding T* adjoint of a linear operator
Consider P_1{}(R), the vector space of real linear polynomials, with inner product
< p(x), q(x) > = \int_0^1 \! p(x)q(x) \, \mathrm{d} x
Let T: P_1{}(R) \rightarrow P_1{}(R) be defined by T(p(x)) = p'(x) + p(x). Find T^*(p(x)) for an arbitrary
p(x) = a + bx^2 \in P_1{}(R).
< T(p(x)), q(x) > = < p(x), T^*(q(x)) >
Using the standard basis of P_1{}(R), \alpha = <1, x>
<T(1),1> = 1
<T(1), x> = 1/2
<T(x), 1> = 3/2
<T(x), x> = 5/6
<br /> [T]_\alpha^{\alpha} =<br /> \left[ {\begin{array}{cc}<br /> 1 & 3/2 \\<br /> 1/2 & 5/6 \\<br /> \end{array} } \right]<br />
<br /> [T^*]_\alpha^{\alpha} =<br /> \left[ {\begin{array}{cc}<br /> 1 & 1/2 \\<br /> 3/2 & 5/6 \\<br /> \end{array} } \right]<br />
Not sure how to find T^* from here...
Homework Statement
Consider P_1{}(R), the vector space of real linear polynomials, with inner product
< p(x), q(x) > = \int_0^1 \! p(x)q(x) \, \mathrm{d} x
Let T: P_1{}(R) \rightarrow P_1{}(R) be defined by T(p(x)) = p'(x) + p(x). Find T^*(p(x)) for an arbitrary
p(x) = a + bx^2 \in P_1{}(R).
Homework Equations
< T(p(x)), q(x) > = < p(x), T^*(q(x)) >
The Attempt at a Solution
Using the standard basis of P_1{}(R), \alpha = <1, x>
<T(1),1> = 1
<T(1), x> = 1/2
<T(x), 1> = 3/2
<T(x), x> = 5/6
<br /> [T]_\alpha^{\alpha} =<br /> \left[ {\begin{array}{cc}<br /> 1 & 3/2 \\<br /> 1/2 & 5/6 \\<br /> \end{array} } \right]<br />
<br /> [T^*]_\alpha^{\alpha} =<br /> \left[ {\begin{array}{cc}<br /> 1 & 1/2 \\<br /> 3/2 & 5/6 \\<br /> \end{array} } \right]<br />
Not sure how to find T^* from here...
Last edited: