- #1

- 53

- 0

**Linear Algebra true/false explanation. :)**

## Homework Statement

True or False:

Is it possible to find a pair of two-dimensional subspaces S and T of R3 such that S (upside down U) = {0} ?

## Homework Equations

## The Attempt at a Solution

My understanding: upside down U = intersection, and for S to intersect T, S must have some vectors that are linear combinations of the vectors of T (and vice versa). These combinations have to = 0... and that's all I've got. I've sifted through my notes and the textbook several times, and the only other thing I could come up with that may or may not be useful (I haven't connected the dots yet), is that:

Def: the vectors v1, v2,...,vn in a vector space V are said to be linearly independent if

c1v1+c2v2+...+cnvn = 0

which implies that all the scalars c1...cn must equal zero

(the answer in the back of the book says that the answer is false, which is why I was looking at linear independence.)

Thanks!