Linear: Find a set of basic solutions and show as linear combination

sumtingwong59
Messages
4
Reaction score
0

Homework Statement


Find a set of basic solutions and express the general solution as a linear combination of these basic solutions

a + 2b - c + 2d + e = 0
a + 2b + 2c + e = 0
2a + 4b - 2c + 3d + e = 0

Homework Equations


3. The Attempt at a Solution [/B]
i reduced it to:
1 2 0 0 -1 0
0 0 1 0 2/3 0
0 0 0 1 1 0

a = -2s + t
c = -2/3t
d = -t

I'm just not sure how i find solutions now. It could be literally anything could it not?
 
Physics news on Phys.org
Assuming your arithmetic is correct (I didn't check), you have let the free variables ##b = s## and ##e = t##. I'm going to leave them as ##b## and ##e##. Write your solution as$$
\left (\begin{array}{c}
a\\b\\c\\d\\e
\end{array}\right)
=
\left (\begin{array}{c}
-2b+e\\b\\-\frac 2 3 e\\-e\\e
\end{array}\right)
=
b\left (\begin{array}{c}
?\\?\\?\\?\\?
\end{array}\right)
+ e
\left (\begin{array}{c}
?\\?\\?\\?\\?
\end{array}\right)
$$Fill in the ?'s and you will have it.
 
Last edited:
LCKurtz said:
Assuming your arithmetic is correct (I didn't check), you have let the free variables ##b = s## and ##e = t##. I'm going to leave them as ##b## and ##e##. Write your solution as$$
\left (\begin{array}{c}
a\\b\\c\\d\\e
\end{array}\right)
=
\left (\begin{array}{c}
-2b+e\\b\\-\frac 2 3 e\\-e\\e
\end{array}\right)
=
b\left (\begin{array}{c}
?\\?\\?\\?\\?
\end{array}\right)
+ c
\left (\begin{array}{c}
?\\?\\?\\?\\?
\end{array}\right)
$$Fill in the ?'s and you will have it.

Do I just pick any number to plug into b and e, and then pick different numbers and plug them into the c bracket?
 
Do I just want to make it so each equation equals 0?
 
sumtingwong59 said:
Do I just pick any number to plug into b and e, and then pick different numbers and plug them into the c bracket?

The ##c## in front of the last bracket was a typo; I have corrected it to ##e##. Fill in the ?'s and there is nothing left to do. Every solution can be gotten for some value of ##b## and ##e##. That is the general solution.
 
Last edited:
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top