MHB Linear Independence: Solving u,v,w Vector Questions

  • Thread starter Thread starter Yankel
  • Start date Start date
  • Tags Tags
    Linear
Click For Summary
The discussion centers on determining the conditions under which the vectors 2u+4v+aw, u+2v, and 2u+bv are linearly independent, given that u, v, and w are already independent. It is established that for the vectors to remain independent, both a must not equal 0 and b must not equal 4. The participants clarify that the conditions in options 1 and 4 are equivalent, while option 3 is insufficient. The conclusion drawn is that the correct answer is option 5, confirming that both conditions on a and b must hold true for linear independence. This analysis emphasizes the importance of understanding vector relationships in linear algebra.
Yankel
Messages
390
Reaction score
0
Hello

I need some help solving the next question:

u,v,w are linearly independent vectors in a vector space V.

the vectors:

2u+4v+aw
u+2v
2u+bv

are linearly independent when:

1. a is not 0
2. b is not 4
3. a is not 0 OR b is not 4
4. a is not 0, and every value of b
5. a is not 0 AND b is not 4

first of all I noticed that answers 1 and 4 are the same.

I also know that x*v+y*u+z*w=0 implies x=y=z=0

but what next ?
 
Last edited:
Physics news on Phys.org
what do you mean by b not equal to 4, b is a vector no?
 
Yankel said:
2u+4v+aw
u+2v
2u+b

According to the possible solutions, the third vector should be $2u+bv$. We have:
$$\lambda_1(2u+4v+aw)+\lambda_2(u+2v)+\lambda_3(2u+bv)=0\Leftrightarrow\\(2\lambda_1+\lambda_2+2 \lambda_3)u+(4\lambda_1+2\lambda_2+b\lambda_3)v+(a\lambda_1)w=0\qquad (1)$$
By hyphothesis, $u,v,w$ are linearly independent so, $(1)$ is satisfied if and only if:
$$\left\{\begin{matrix}2\lambda_1+\lambda_2+2 \lambda_3=0\\4\lambda_1+2\lambda_2+b\lambda_3=0\\a\lambda_1=0\end{matrix}\right.\qquad (2)$$
The homogeneous linear system $(2)$ has only the trivial solution if and only if:
$$\mbox{rank }\begin{bmatrix}{2}&1&{2}\\{4}&{2}&{b}\\{a}&{0}&{0}\end{bmatrix}=3\Leftrightarrow\begin{vmatrix}{2}&1&{2}\\{4}&{2}&{b}\\{a}&{0}&{0}\end{vmatrix}\neq 0\Leftrightarrow a(b-4)\neq 0\Leftrightarrow a\neq 0\wedge b\neq 4$$
The correct answer is 5., $a$ is not $0$ and $b$ is not $4$.
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 23 ·
Replies
23
Views
2K
  • · Replies 24 ·
Replies
24
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K