MHB Linear Independence: Solving u,v,w Vector Questions

  • Thread starter Thread starter Yankel
  • Start date Start date
  • Tags Tags
    Linear
Yankel
Messages
390
Reaction score
0
Hello

I need some help solving the next question:

u,v,w are linearly independent vectors in a vector space V.

the vectors:

2u+4v+aw
u+2v
2u+bv

are linearly independent when:

1. a is not 0
2. b is not 4
3. a is not 0 OR b is not 4
4. a is not 0, and every value of b
5. a is not 0 AND b is not 4

first of all I noticed that answers 1 and 4 are the same.

I also know that x*v+y*u+z*w=0 implies x=y=z=0

but what next ?
 
Last edited:
Physics news on Phys.org
what do you mean by b not equal to 4, b is a vector no?
 
Yankel said:
2u+4v+aw
u+2v
2u+b

According to the possible solutions, the third vector should be $2u+bv$. We have:
$$\lambda_1(2u+4v+aw)+\lambda_2(u+2v)+\lambda_3(2u+bv)=0\Leftrightarrow\\(2\lambda_1+\lambda_2+2 \lambda_3)u+(4\lambda_1+2\lambda_2+b\lambda_3)v+(a\lambda_1)w=0\qquad (1)$$
By hyphothesis, $u,v,w$ are linearly independent so, $(1)$ is satisfied if and only if:
$$\left\{\begin{matrix}2\lambda_1+\lambda_2+2 \lambda_3=0\\4\lambda_1+2\lambda_2+b\lambda_3=0\\a\lambda_1=0\end{matrix}\right.\qquad (2)$$
The homogeneous linear system $(2)$ has only the trivial solution if and only if:
$$\mbox{rank }\begin{bmatrix}{2}&1&{2}\\{4}&{2}&{b}\\{a}&{0}&{0}\end{bmatrix}=3\Leftrightarrow\begin{vmatrix}{2}&1&{2}\\{4}&{2}&{b}\\{a}&{0}&{0}\end{vmatrix}\neq 0\Leftrightarrow a(b-4)\neq 0\Leftrightarrow a\neq 0\wedge b\neq 4$$
The correct answer is 5., $a$ is not $0$ and $b$ is not $4$.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Replies
8
Views
1K
Replies
10
Views
2K
Replies
24
Views
2K
Replies
9
Views
2K
Replies
9
Views
1K
Replies
12
Views
2K
Back
Top