Linear Integration of a Vector Field over a Parametric Path

sriracha
Messages
28
Reaction score
0
Problem statement attached. The correct way to do this seems to plug in your given x, y, z into F then integrate the dot product of F and <x',y',z'> dp from 0 to 1, however, this results in way too messy of an integral. Answer is 3/e.

<e^-(sin(pi*p/2))-((1-e^p)/(1-e))e^-(ln(1+p)/ln(2)),e^-((1-e^p)/(1-e))-(ln(1+p)/ln(2))e^-(sin(pi*p/2)),e^-(ln(1+p)/ln(2))-(sin(pi*p/2))e^-((1-e^p)/(1-e))>.<2^(x-1)ln(2),2/(pi*sqrt(1-y^2),(e-1)/((e-1)y+1)>
 

Attachments

  • III-19.jpeg
    III-19.jpeg
    33 KB · Views: 518
Physics news on Phys.org
sriracha said:
Problem statement attached. The correct way to do this seems to plug in your given x, y, z into F then integrate the dot product of F and <x',y',z'> dp from 0 to 1, however, this results in way too messy of an integral. Answer is 3/e.

<e^-(sin(pi*p/2))-((1-e^p)/(1-e))e^-(ln(1+p)/ln(2)),e^-((1-e^p)/(1-e))-(ln(1+p)/ln(2))e^-(sin(pi*p/2)),e^-(ln(1+p)/ln(2))-(sin(pi*p/2))e^-((1-e^p)/(1-e))>.<2^(x-1)ln(2),2/(pi*sqrt(1-y^2),(e-1)/((e-1)y+1)>

It would be awfully nice if the vector field F were a gradient of some scalar function, wouldn't it? Can you guess one that works?
 
Okay so I figured this out, but I had to read into the next chapter to do so. This is from Div, Grad, Curl, which really should be called Div, Curl, Grad. Why would Schey ask this problem before you get to gradient and how would he expect you to find it otherwise? Can anyone think of another possible path to solving this? I mean it's certainly possible that someone would realize the F.t ds = \psi, but I imagine even for a quite brilliant person that would take some time.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top