- #1

- 10

- 0

## Homework Statement

Let A[itex]_{2x2}[/itex] have all entries=1 and let T: M[itex]_{2x2}[/itex][itex]\rightarrow[/itex]M[itex]_{2x2}[/itex] be the linear transformation defined by T(B)=AB for all B[itex]\in[/itex]M[itex]_{2x2}[/itex]

Find the matrix C=[T]s,s, where S is the standard basis for M[itex]_{2x2}[/itex]

My solution:

Standard basis for M[itex]_{2x2}[/itex]={(1,0),(0,1)}

T(1,0)=(1,1)

T(0,1)=(1,1)

[T]s,s=(1,1;1,1)

I'm not sure how correct this is. Any advice would be appreciated.