How to Find Two Linearly Independent Solutions of (y' + f(x)y)' = 0?

shapiro478
Messages
7
Reaction score
0
Say f is a continuous function on R. How could I find two linearly independent solutions of (y' + f(x)y)' = 0? Notice that there is no hypothesis about f being differentiable, so the obvious method of attack (taking the derivative of each term in the parenthesis and working off the resultant second-order differential equation) probably isn't a good idea. How does the linearly independent part play into this all?
 
Physics news on Phys.org
You know the derivative of the left-hand-side is 0, so the bit in parentheses is a constant. That's probably the place to start.
 
Last edited:
Why in the world would the "obvious method of attack" be to differentiate? As dhris said, the integral will be a constant. y' + f(x)y= C where C is an arbitrary constant. Taking two different values for C, say 0 and 1, will give you two different linear, first order, equations to solve for the two independent solutions to the original equation.
 
There is the following linear Volterra equation of the second kind $$ y(x)+\int_{0}^{x} K(x-s) y(s)\,{\rm d}s = 1 $$ with kernel $$ K(x-s) = 1 - 4 \sum_{n=1}^{\infty} \dfrac{1}{\lambda_n^2} e^{-\beta \lambda_n^2 (x-s)} $$ where $y(0)=1$, $\beta>0$ and $\lambda_n$ is the $n$-th positive root of the equation $J_0(x)=0$ (here $n$ is a natural number that numbers these positive roots in the order of increasing their values), $J_0(x)$ is the Bessel function of the first kind of zero order. I...
Are there any good visualization tutorials, written or video, that show graphically how separation of variables works? I particularly have the time-independent Schrodinger Equation in mind. There are hundreds of demonstrations out there which essentially distill to copies of one another. However I am trying to visualize in my mind how this process looks graphically - for example plotting t on one axis and x on the other for f(x,t). I have seen other good visual representations of...
Back
Top