Linearly Independent: Why ${}\left\{X+Y, Y+Z, Z+W, W+X\right\}$ Isn't

  • Context: MHB 
  • Thread starter Thread starter Dethrone
  • Start date Start date
  • Tags Tags
    Independent Linearly
Click For Summary

Discussion Overview

The discussion revolves around the linear independence of the set ${}\left\{X+Y, Y+Z, Z+W, W+X\right\}$ given that ${}\left\{X, Y, Z, W\right\}$ is an independent set in $\Bbb{R}^n$. Participants explore the reasoning behind the dependence of the new set and the implications of linear combinations.

Discussion Character

  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • One participant questions the independence of the set ${}\left\{X+Y, Y+Z, Z+W, W+X\right\}$ and attempts to derive a contradiction using the independence of ${}\left\{X, Y, Z, W\right\}$.
  • Another participant provides a specific linear combination that demonstrates the dependence of the set, stating that the relation $$(X + Y) - (Y + Z) + (Z + W) - (W + X) = 0$$ holds for all vectors in $\Bbb{R}^n$.
  • A participant expresses confusion about their earlier reasoning and calculations, questioning why they could not arrive at the same conclusion regarding dependence.
  • Another participant corrects the initial calculations, explaining the implications of the conditions derived from the linear combination.
  • A participant provides a concrete example using specific vector representations to illustrate the dependence of the set, detailing the calculations involved.
  • One participant reflects on their initial understanding and acknowledges that their earlier reasoning was indeed correct, recognizing the implications of their findings.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the reasoning behind the dependence of the set, as some express confusion while others provide clarifications. Multiple viewpoints and interpretations of the linear combinations are present.

Contextual Notes

Some participants' calculations and reasoning involve assumptions about the independence of the original set, which may not directly apply to the derived set. The discussion highlights the complexity of linear combinations and their implications for independence.

Dethrone
Messages
716
Reaction score
0
Let ${}\left\{X, Y, Z, W\right\}$ be an independent set in $\Bbb{R}^n$, is the following set independent?
${}\left\{X+Y, Y+Z, Z+W, W+X\right\}$

My textbook says it isn't, but I'm not sure why. Let $\lambda_1, \lambda_2, \lambda_3, \lambda_4$ be scalars, then $\lambda_1(X+Y)+\lambda_2(Y+Z)+\lambda_3(Z+W)+\lambda_4(W+X)=0$. Expanding an simplifying, we get $(\lambda_1+\lambda_4)X+(\lambda_1+\lambda_2)Y+(\lambda_2+\lambda_3)Z+(\lambda_3+\lambda_4)W=0$.

Since we are given that ${}\left\{X, Y, Z, W\right\}$ is independent, then $(\lambda_1+\lambda_4)=0$, $(\lambda_1+\lambda_2)=0$, $(\lambda_2+\lambda_3)=0$, and $(\lambda_3+\lambda_4)=0$. This implies that $\lambda_1=\lambda_3=-\lambda_2=-\lambda_4=0$. Why is it not independent, then?
 
Physics news on Phys.org
Hello again Rido12,

The set $\{X + Y, Y + Z, Z + W, W + X\}$ is dependent because $$(X + Y) - (Y + Z) + (Z + W) - (W + X) = 0.$$ This relation has nothing to do with the independence of $\{X, Y, Z, W\}$; the above identity holds for all $X, Y, Z, W \in \Bbb R^n$.
 
Hi Euge! That makes complete sense, but how come I wasn't able to distill that solution when wrote it as a linear combination? What is wrong with the reasoning?
Starting with this line:
$\lambda_1(X+Y)+\lambda_2(Y+Z)+\lambda_3(Z+W)+\lambda_4(W+X)=0$, a solution is clearly $\lambda_1=1, \lambda_2=-1, \lambda_3=1, \lambda_4=-1$, as you have pointed out.
What is wrong with rewriting that as $(\lambda_1+\lambda_4)X+(\lambda_1+\lambda_2)Y+(\lambda_2+\lambda_3)Z+(\lambda_3+\lambda_4)W=0$ and using ${}\left\{X, Y, Z, W\right\}$'s independence as a tool? Could the question be purposely trying to mislead, as that fact was clearly given as an assumption?
 
You're making mistakes in your calculations. The conditions $\lambda_1 + \lambda_4 = \lambda_1 + \lambda_2 = \lambda_2 + \lambda_3 = \lambda_3 + \lambda_4$ imply $\lambda_1 = \lambda_3$ and $\lambda_2 = \lambda_4$. Since $\lambda_1 + \lambda_2 = 0$, $\lambda_1 = -\lambda_2$. The general solution will be $(\lambda_1, \lambda_2, \lambda_3, \lambda_4) = \lambda(1,-1,1,-1)$, $\lambda \in \Bbb R$.
 
A set of vectors $\{\textbf{W}, \textbf{X}, \textbf{Y}, \textbf{Z}\}$ are $\textbf{Linearly Independent}$ if there exists scalars $a,b,c,d$ such that $a\textbf{W} + b\textbf{X} + c\textbf{Y} + d\textbf{Z} = \textbf{0}, a = b = c = d = \textbf{0}$.

A set of vectors $\{\textbf{W}, \textbf{X}, \textbf{Y}, \textbf{Z}\}$ are $\textbf{Linearly Dependent}$ if there exists scalars $a,b,c,d$ such that $a\textbf{W} + b\textbf{X} + c\textbf{Y} + d\textbf{Z} = \textbf{0}$ and $a - d$ are not all $\textbf{0}$.

Let $W = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, X = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}, Y = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}, Z = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$

Then

$X + Y = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \end{bmatrix}
\\Y + Z = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}
\\Z + W = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}
\\W + X = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$

And
$\begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \end{bmatrix} - \left(\begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}\right)
= \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} = \textbf{0}$

Therefore:
$(Z + W) + (X + Y) - ((Y + Z) + (W + Z)) = \textbf{0}$
and $(a, b, c, d) = (1, 1, -1, -1)$

Conclusion:
The set $\{X + Y, Y + Z, W + Z, Z + W\}$ is not linearly independent.
 
Thanks Euge and bwpbruce for the help!It turns out that I actually had the answer from the beginning when I stated $\lambda_1=\lambda_3=-\lambda_2=-\lambda_4$ in the first post, as it not only implies that $\lambda_1=\lambda_2=\lambda_3=\lambda_4=0$, but $\lambda_1=\lambda_3=1$ and $\lambda_2=\lambda_4=-1$ and vice-versa, which does satisfy the equation. Needless to say I probably stayed up too late that night.
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 12 ·
Replies
12
Views
2K