MHB Linearly Independent: Why ${}\left\{X+Y, Y+Z, Z+W, W+X\right\}$ Isn't

Dethrone
Messages
716
Reaction score
0
Let ${}\left\{X, Y, Z, W\right\}$ be an independent set in $\Bbb{R}^n$, is the following set independent?
${}\left\{X+Y, Y+Z, Z+W, W+X\right\}$

My textbook says it isn't, but I'm not sure why. Let $\lambda_1, \lambda_2, \lambda_3, \lambda_4$ be scalars, then $\lambda_1(X+Y)+\lambda_2(Y+Z)+\lambda_3(Z+W)+\lambda_4(W+X)=0$. Expanding an simplifying, we get $(\lambda_1+\lambda_4)X+(\lambda_1+\lambda_2)Y+(\lambda_2+\lambda_3)Z+(\lambda_3+\lambda_4)W=0$.

Since we are given that ${}\left\{X, Y, Z, W\right\}$ is independent, then $(\lambda_1+\lambda_4)=0$, $(\lambda_1+\lambda_2)=0$, $(\lambda_2+\lambda_3)=0$, and $(\lambda_3+\lambda_4)=0$. This implies that $\lambda_1=\lambda_3=-\lambda_2=-\lambda_4=0$. Why is it not independent, then?
 
Physics news on Phys.org
Hello again Rido12,

The set $\{X + Y, Y + Z, Z + W, W + X\}$ is dependent because $$(X + Y) - (Y + Z) + (Z + W) - (W + X) = 0.$$ This relation has nothing to do with the independence of $\{X, Y, Z, W\}$; the above identity holds for all $X, Y, Z, W \in \Bbb R^n$.
 
Hi Euge! That makes complete sense, but how come I wasn't able to distill that solution when wrote it as a linear combination? What is wrong with the reasoning?
Starting with this line:
$\lambda_1(X+Y)+\lambda_2(Y+Z)+\lambda_3(Z+W)+\lambda_4(W+X)=0$, a solution is clearly $\lambda_1=1, \lambda_2=-1, \lambda_3=1, \lambda_4=-1$, as you have pointed out.
What is wrong with rewriting that as $(\lambda_1+\lambda_4)X+(\lambda_1+\lambda_2)Y+(\lambda_2+\lambda_3)Z+(\lambda_3+\lambda_4)W=0$ and using ${}\left\{X, Y, Z, W\right\}$'s independence as a tool? Could the question be purposely trying to mislead, as that fact was clearly given as an assumption?
 
You're making mistakes in your calculations. The conditions $\lambda_1 + \lambda_4 = \lambda_1 + \lambda_2 = \lambda_2 + \lambda_3 = \lambda_3 + \lambda_4$ imply $\lambda_1 = \lambda_3$ and $\lambda_2 = \lambda_4$. Since $\lambda_1 + \lambda_2 = 0$, $\lambda_1 = -\lambda_2$. The general solution will be $(\lambda_1, \lambda_2, \lambda_3, \lambda_4) = \lambda(1,-1,1,-1)$, $\lambda \in \Bbb R$.
 
A set of vectors $\{\textbf{W}, \textbf{X}, \textbf{Y}, \textbf{Z}\}$ are $\textbf{Linearly Independent}$ if there exists scalars $a,b,c,d$ such that $a\textbf{W} + b\textbf{X} + c\textbf{Y} + d\textbf{Z} = \textbf{0}, a = b = c = d = \textbf{0}$.

A set of vectors $\{\textbf{W}, \textbf{X}, \textbf{Y}, \textbf{Z}\}$ are $\textbf{Linearly Dependent}$ if there exists scalars $a,b,c,d$ such that $a\textbf{W} + b\textbf{X} + c\textbf{Y} + d\textbf{Z} = \textbf{0}$ and $a - d$ are not all $\textbf{0}$.

Let $W = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, X = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}, Y = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}, Z = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$

Then

$X + Y = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \end{bmatrix}
\\Y + Z = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}
\\Z + W = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}
\\W + X = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$

And
$\begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \end{bmatrix} - \left(\begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}\right)
= \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} = \textbf{0}$

Therefore:
$(Z + W) + (X + Y) - ((Y + Z) + (W + Z)) = \textbf{0}$
and $(a, b, c, d) = (1, 1, -1, -1)$

Conclusion:
The set $\{X + Y, Y + Z, W + Z, Z + W\}$ is not linearly independent.
 
Thanks Euge and bwpbruce for the help!It turns out that I actually had the answer from the beginning when I stated $\lambda_1=\lambda_3=-\lambda_2=-\lambda_4$ in the first post, as it not only implies that $\lambda_1=\lambda_2=\lambda_3=\lambda_4=0$, but $\lambda_1=\lambda_3=1$ and $\lambda_2=\lambda_4=-1$ and vice-versa, which does satisfy the equation. Needless to say I probably stayed up too late that night.
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K