Link redshift with luminosity distance?

June_cosmo
Messages
24
Reaction score
0

Homework Statement


Plot luminosity distance and redshift z

Homework Equations


$$d_L(z)=(1+z)r(z)$$
where d_L(z) is luminosity distance and r(z) is the comoving distance.
and we have
$$r(z)= \frac{H_0^{-1}}{\sqrt\Omega_K}*sinn[\sqrt{\Omega_K}\int_0^z\frac{dz'}{\sqrt{\Omega_M(1+z')^3}}]$$
where \Omega_Kis a measure of openness or closedness of the universe, sinn(x)=x in flat universe.
Suppose we consider a universe that is both flat and matter dominant, where \Omega_K=0,and \Omega_M=1.

The Attempt at a Solution


From the information given we know that
$$H_0d_L(z)=(1+z)\int_0^6\frac{dz'}{\sqrt{(1+z')^3}}$$
but I don't know how do I deal with z' when I plot it in, for example python? Since I don't know what z' equals to
 
Last edited:
Physics news on Phys.org
June_cosmo said:
$$H_0d_L(z)=(1+z)\int_0^6\frac{dz'}{\sqrt{(1+z')^3}}$$
but I don't know how do I deal with z' when I plot it in, for example python? Since I don't know what z' equals to
z' is not equal to anything. It's what's called a dummy variable, like a looping variable in Python.
Nor do you need to program the integral calculation. Just work out the definite integral and you'll get a number that does not change with z. Work out the number once, then hard-code it into your program as a constant.
 
andrewkirk said:
z' is not equal to anything. It's what's called a dummy variable, like a looping variable in Python.
Nor do you need to program the integral calculation. Just work out the definite integral and you'll get a number that does not change with z. Work out the number once, then hard-code it into your program as a constant.
Oh so you mean just work out
$$\int_0^6\frac{dz'}{\sqrt{(1+z')^3}}$$
which is approximate 1.24, then just plot
$$H_0d_L(z)=1.24(1+z)?$$
 
Yes, that's it.
 
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top